
Stateful Greybox Fuzzing

1

Jinsheng Ba1 , Marcel Böhme2,3, Zahra Mirzamomen2 , and Abhik Roychoudhury1

1National University of Singapore, 2Monash University, 3MPI-SP

Challenge: Bugs in Stateful Programs

2

Input 1

Input 2

Input 3 Input 3

Challenge: Bugs in Stateful Programs

3

Input 1

Input 2

Input 3 Input 3

Stateful
Bugs

Challenge: Bugs in Stateful Programs

4

Input 1

Input 2

Input 3 Input 3

Stateful
Bugs

Problem: How to efficiently find stateful bugs?

Challenge: Bugs in Stateful Programs

5

Challenge: Cover the state space without a
specification of the required event sequences.

5

Input 1

Input 2

Input 3 Input 3

Stateful
Bugs

Past Works

• AFL, LibFuzzer

• AFLNet

• IJON

6

Return
code

Can not represent program internal states

Requires human knowledge (state specification)

Stateless fuzzers that cannot generate a
sequence of inputs in specific orders.

Protocol Implementations (Stateful Programs)

7

Server
(HTTP/2 Protocol)

Frame

Frame

…

HTTP Request

Client

Protocol Implementations (Stateful Programs)

8

Client

Header Frame

Data Frame

Server
(HTTP/2 Protocol)

State Identification

• They are represented by state variables with named constants.

9

• They are represented by state variables with named constants.

10

H2O OpenSSL

State Identification

Top-50 most widely used protocol implementations use
named constants to represent protocol states.

44 of 50 use enumeration type, 6 use #define macro, to define the named constants.
Including 16 protocols: FTP, SFTP, TLS, SMTP, HTTP2, RDP, NTP, IMAP, IRC, SMB, DAAP, SIP, DICOM, VNC,
RTSP, MQTT.

11

• stream->state

12

Data Frame

• stream->state

13

Data FrameHeader Frame

• stream->state

14

Insight

• There may be variables take named constants that are not state
variables (e.g., configuration variables, error code variables)

• In our evaluation, over 99% of extracted variables are true states.

15

Approximating state variables by the variables with
named constants.

Stateful Greybox Fuzzing

16

Code coverage map

State
Transition Tree

Mutate and execute inputs

Branch coverage
Feedback

State Feedback

Collection

Fuzzer

State
schedule

In fuzzing, we monitor the changes
of values of enumeration variables.

State Transition Tree Construction

17

Monitor the variable:
stream->state

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

State Transition Tree Construction

18

END_STREAM

Monitor the variable:
stream->state

In fuzzing, we monitor the changes
of values of enumeration variables.

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

State Transition Tree Construction

19

END_STREAM

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

Monitor the variable:
stream->state

In fuzzing, we monitor the changes
of values of enumeration variables.

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

State Transition Tree Construction

20

END_STREAM

END_STREAM

END_STREAM

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

Monitor the variable:
stream->state

In fuzzing, we monitor the changes
of values of enumeration variables.

Is State Transition Tree Meaningful?

21

Extracting the state machine from the State Transition Tree
by merging the nodes with the same value.

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

Is State Transition Tree Meaningful?

22

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

Compare with the official document.

https://datatracker.ietf.org/doc/html/rfc7540#section-5.1

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

Is State Transition Tree Meaningful?

23

Compare with the official document.

https://datatracker.ietf.org/doc/html/rfc7540#section-5.1

State Fuzzing Algorithm

24

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

1. Save the inputs that trigger new state transitions.

State Fuzzing Algorithm

25

1. Save the inputs that trigger new state transitions.
2. Assign more energy on the “core-logic” state sequences.

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

Valuable State Transition Sequence

26

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

Error
Handle

Core
Logic

80% ~ 99%

1% ~ 20%

Core Logic

Error
Handling

State Fuzzing Algorithm

27

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

1. Save the inputs that trigger new state transitions.
2. Assign more energy on the “core-logic” state sequences.

For each input 𝐼:
𝑁𝑢𝑚 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝐼

𝑁𝑢𝑚 𝑜𝑓 𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑖𝑛𝑝𝑢𝑡𝑠 𝑡ℎ𝑎𝑡 𝑠𝑡𝑖𝑙𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑒
𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

State Fuzzing Algorithm

28

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

1. Save the inputs that trigger new state transitions.
2. Assign more energy on the “core-logic” state sequences.
3. Correlate input bytes and state transitions, giving more
opportunities on mutating these bytes.

Input

State Fuzzing Algorithm

29

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

1. Save the inputs that trigger new state transitions.
2. Assign more energy on the “core-logic” state sequences.
3. Correlate input bytes and state transitions, giving more
opportunities on mutating these bytes.

Input

Mutation

State Fuzzing Algorithm

30

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

1. Save the inputs that trigger new state transitions.
2. Assign more energy on the “core-logic” state sequences.
3. Correlate input bytes and state transitions, giving more
opportunities on mutating these bytes.

More effort to mutate
this part

Implementation

SGFuzz is built on top of LibFuzzer:

10x faster than AFL (In-memory VS Fork).

31

Implementation

32

…
conn->state = H2O_HTTP2_CONN_STATE_HALF_CLOSED;
…

…
{__sfuzzer_instrument(855, H2O_HTTP2_CONN_STATE_HALF_CLOSED);
conn->state = H2O_HTTP2_CONN_STATE_HALF_CLOSED;}
…

Process

SGFuzz

Instrumented Program

Source code

Instrument source code by Python

LibFuzzer

Automatically search the
assignments to the enumeration
variables by regex match

Implementation

33

…
conn->state = H2O_HTTP2_CONN_STATE_HALF_CLOSED;
…

…
{__sfuzzer_instrument(855, H2O_HTTP2_CONN_STATE_HALF_CLOSED);
conn->state = H2O_HTTP2_CONN_STATE_HALF_CLOSED;}
…

Process

SGFuzz

Instrumented Program

Source code

Instrument source code by Python

LibFuzzer

Evaluation: Benchmarks

34

Share represents the number of IPs running it on the Internet according to Shodan(www.shodan.io)

23 hours & 20 runs

Subject Protocol Fuzz Driver Commit Size Share

H2O HTTP h2o-fuzzer-http2 1e7344 337kLoC 12kIPs

MbedTLS SSL/TLS dtlsserver e483a7 138kLoC 8mIPs

Curl Several curl_fuzzer aab3a7 202kLoC -

Gstreamer Custom gst-discoverer 44bdad 235kLoC 15kIPs

OpenSSL SSL/TLS netdriver 1e08f3 673kLoC >10mIPs

Live555 RTSP netdriver 21.Aug'08 17kLoC 12kIPs

OwnTone DAAP netdriver 774d7c 37kLoC 10kIPs

DCMTK DICOM netdriver 24ebf4 38kLoC 3kIPs

State Transition Coverage
• We measure the number of state transition sequences in the State

Transition Tree

35

Subject AFLNet LibFuzzer IJON SGFuzz Factor

H2O - 70.80 91.85 1849.30 26.1

MbedTLS - 22.80 32.45 50.80 2.2

Curl - 150.25 375.75 14630.80 97.3

Gstreamer - 49.40 134.20 4067.30 82.3

OpenSSL 13.25 23.95 29.60 33.10 1.4

Live555 138.27 184.15 405.3 1162.30 6.3

OwnTone 1.00 46.40 426.00 930.15 20.0

DCMTK 68.10 189.25 267.50 6737.05 35.6
Avg: 33.9x

On average, SGFuzz covers state transition sequences 30 times more than the
baseline LibFuzzer.

State Identification Effectiveness

Subject
State Transition Tree

All Nodes State Percentage

H2O 6418 6417 99.98%

MbedTLS 167 167 100.00%

Curl 35690 35629 99.83%

Gstreamer 11240 11224 99.86%

OpenSSL 817 789 96.57%

Live555 17446 17446 100.00%

OwnTone 3671 3671 100.00%

DCMTK 27178 27109 99.75%

36

Avg: 99.50%

In our data structure State Transition Tree, 99.5% nodes are related to the true states.

New Bugs

37

Subject Version Type Stateful CVE

Live555 1.08 Stack-based overflow in liveMedia/MP3FileSource.cpp ✔ CVE-2021-38380

Live555 1.08 Heap use after free in liveMedia/MatroskaFile.cpp ✔ CVE-2021-38381

Live555 1.08 Heap use after free in liveMedia/MPEG1or2Demux.cpp ✔ CVE-2021-38382

Live555 1.08 Memory leak in liveMedia/AC3AudioStreamFramer.cpp ✔ CVE-2021-39282

Live555 1.08 Assertion in UsageEnvironment/UsageEnvironment.cpp ✔ CVE-2021-39283

Live555 1.08 Heap-based overflow in BasicUsageEnvironment/BasicTaskScheduler.cpp✔ CVE-2021-41396

Live555 1.08 Memory leak in liveMedia/MPEG1or2Demux.cpp ✔ CVE-2021-41397

OwnTone 28.2 Heap use after free in src/misc.c ✖ CVE-2021-38383

DCMTK 3.6.6 Memory leak in dcmnet/libsrc/dulparse.cc ✖ CVE-2021-41687

DCMTK 3.6.6 Memory leak in dcmnet/libsrc/dulparse.cc ✔ CVE-2021-41688

DCMTK 3.6.6 Heap use after free in dcmqrdb/libsrc/dcmqrsrv.cc ✔ CVE-2021-41689

DCMTK 3.6.6 Heap-based overflow in dcmnet/libsrc/diutil.cc ✔ CVE-2021-41690

We found 12 previously unknown bugs in 23 hours, and 10 of 12 are stateful bugs.

Conclusion

38

jinsheng@comp.nus.edu.sg
https://github.com/bajinsheng/SGFuzz

mailto:jinsheng@comp.nus.edu.sg
https://github.com/bajinsheng/SGFuzz

