
Stateful Greybox Fuzzing

1

Jinsheng Ba1 , Marcel Böhme2,3, Zahra Mirzamomen2 , and Abhik Roychoudhury1

1National University of Singapore, 2Monash University, 3MPI-SP



Challenge: Bugs in Stateful Programs

2

Input 1

Input 2

Input 3 Input 3



Challenge: Bugs in Stateful Programs

3

Input 1

Input 2

Input 3 Input 3

Stateful 
Bugs



Challenge: Bugs in Stateful Programs

4

Input 1

Input 2

Input 3 Input 3

Stateful 
Bugs

Problem: How to efficiently find stateful bugs?
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5

Challenge: Cover the state space without a 
specification of the required event sequences.
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Past Works

• AFL, LibFuzzer

• AFLNet

• IJON
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Return 
code

Can not represent program internal states

Requires human knowledge (state specification)

Stateless fuzzers that cannot generate a 
sequence of inputs in specific orders.
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State Identification

• They are represented by state variables with named constants.
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• They are represented by state variables with named constants.
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H2O OpenSSL

State Identification



Top-50 most widely used protocol implementations use 
named constants to represent protocol states.

44 of 50 use enumeration type, 6 use #define macro, to define the named constants.
Including 16 protocols: FTP, SFTP, TLS, SMTP, HTTP2, RDP, NTP, IMAP, IRC, SMB, DAAP, SIP, DICOM, VNC, 
RTSP, MQTT.
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• stream->state
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Data Frame

• stream->state
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Data FrameHeader Frame

• stream->state
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Insight

• There may be variables take named constants that are not state 
variables (e.g., configuration variables, error code variables)

• In our evaluation, over 99% of extracted variables are true states.
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Approximating state variables by the variables with 
named constants.
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In fuzzing, we monitor the changes 
of values of enumeration variables.

State Transition Tree Construction
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Monitor the variable: 
stream->state
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Is State Transition Tree Meaningful?
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Extracting the state machine from the State Transition Tree 
by merging the nodes with the same value.
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Compare with the official document.

https://datatracker.ietf.org/doc/html/rfc7540#section-5.1
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Compare with the official document.

https://datatracker.ietf.org/doc/html/rfc7540#section-5.1



State Fuzzing Algorithm

24

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

1. Save the inputs that trigger new state transitions.
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1. Save the inputs that trigger new state transitions.
2. Assign more energy on the “core-logic” state sequences.
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Valuable State Transition Sequence
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State Fuzzing Algorithm
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1. Save the inputs that trigger new state transitions.
2. Assign more energy on the “core-logic” state sequences.

For each input 𝐼:
𝑁𝑢𝑚 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝐼

𝑁𝑢𝑚 𝑜𝑓 𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑖𝑛𝑝𝑢𝑡𝑠 𝑡ℎ𝑎𝑡 𝑠𝑡𝑖𝑙𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑒
𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒



State Fuzzing Algorithm

28

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

1. Save the inputs that trigger new state transitions.
2. Assign more energy on the “core-logic” state sequences.
3. Correlate input bytes and state transitions, giving more 
opportunities on mutating these bytes. 

Input



State Fuzzing Algorithm

29

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

1. Save the inputs that trigger new state transitions.
2. Assign more energy on the “core-logic” state sequences.
3. Correlate input bytes and state transitions, giving more 
opportunities on mutating these bytes. 

Input

Mutation



State Fuzzing Algorithm

30

IDLE

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

BODY_IS_FINAL

END_STREAM

1. Save the inputs that trigger new state transitions.
2. Assign more energy on the “core-logic” state sequences.
3. Correlate input bytes and state transitions, giving more 
opportunities on mutating these bytes. 

More effort to mutate 
this part



Implementation

SGFuzz is built on top of LibFuzzer:

10x  faster than AFL (In-memory VS Fork).
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Implementation
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…
conn->state = H2O_HTTP2_CONN_STATE_HALF_CLOSED;
…

…
{__sfuzzer_instrument(855, H2O_HTTP2_CONN_STATE_HALF_CLOSED );     
conn->state = H2O_HTTP2_CONN_STATE_HALF_CLOSED;}
…

Process

SGFuzz

Instrumented Program

Source code

Instrument source code by Python

LibFuzzer

Automatically search the 
assignments to the enumeration 
variables by regex match
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Evaluation: Benchmarks
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Share represents the number of IPs running it on the Internet according to Shodan(www.shodan.io)

23 hours & 20 runs

Subject Protocol Fuzz Driver Commit Size Share

H2O HTTP h2o-fuzzer-http2 1e7344 337kLoC 12kIPs

MbedTLS SSL/TLS dtlsserver e483a7 138kLoC 8mIPs

Curl Several curl_fuzzer aab3a7 202kLoC -

Gstreamer Custom gst-discoverer 44bdad 235kLoC 15kIPs

OpenSSL SSL/TLS netdriver 1e08f3 673kLoC >10mIPs

Live555 RTSP netdriver 21.Aug'08 17kLoC 12kIPs

OwnTone DAAP netdriver 774d7c 37kLoC 10kIPs

DCMTK DICOM netdriver 24ebf4 38kLoC 3kIPs



State Transition Coverage
• We measure the number of state transition sequences in the State 

Transition Tree
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Subject AFLNet LibFuzzer IJON SGFuzz Factor

H2O - 70.80 91.85 1849.30 26.1

MbedTLS - 22.80 32.45 50.80 2.2

Curl - 150.25 375.75 14630.80 97.3

Gstreamer - 49.40 134.20 4067.30 82.3

OpenSSL 13.25 23.95 29.60 33.10 1.4

Live555 138.27 184.15 405.3 1162.30 6.3

OwnTone 1.00 46.40 426.00 930.15 20.0

DCMTK 68.10 189.25 267.50 6737.05 35.6
Avg: 33.9x

On average, SGFuzz covers state transition sequences 30 times more than the 
baseline LibFuzzer.



State Identification Effectiveness

Subject
State Transition Tree

All Nodes State Percentage

H2O 6418 6417 99.98%

MbedTLS 167 167 100.00%  

Curl 35690 35629 99.83% 

Gstreamer 11240 11224 99.86%

OpenSSL 817 789 96.57%

Live555 17446 17446 100.00% 

OwnTone 3671 3671 100.00% 

DCMTK 27178 27109 99.75% 
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Avg: 99.50%

In our data structure State Transition Tree, 99.5% nodes are related to the true states.



New Bugs
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Subject Version Type Stateful CVE

Live555 1.08 Stack-based overflow in liveMedia/MP3FileSource.cpp ✔ CVE-2021-38380

Live555 1.08 Heap use after free in liveMedia/MatroskaFile.cpp ✔ CVE-2021-38381

Live555 1.08 Heap use after free in liveMedia/MPEG1or2Demux.cpp ✔ CVE-2021-38382

Live555 1.08 Memory leak in liveMedia/AC3AudioStreamFramer.cpp ✔ CVE-2021-39282

Live555 1.08 Assertion in UsageEnvironment/UsageEnvironment.cpp ✔ CVE-2021-39283

Live555 1.08 Heap-based overflow in BasicUsageEnvironment/BasicTaskScheduler.cpp✔ CVE-2021-41396

Live555 1.08 Memory leak in liveMedia/MPEG1or2Demux.cpp ✔ CVE-2021-41397

OwnTone 28.2 Heap use after free in src/misc.c ✖ CVE-2021-38383

DCMTK 3.6.6 Memory leak in dcmnet/libsrc/dulparse.cc ✖ CVE-2021-41687

DCMTK 3.6.6 Memory leak in dcmnet/libsrc/dulparse.cc ✔ CVE-2021-41688

DCMTK 3.6.6 Heap use after free in dcmqrdb/libsrc/dcmqrsrv.cc ✔ CVE-2021-41689

DCMTK 3.6.6 Heap-based overflow in dcmnet/libsrc/diutil.cc ✔ CVE-2021-41690

We found 12 previously unknown bugs in 23 hours, and 10 of 12 are stateful bugs.



Conclusion
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