
Efficient Greybox Fuzzing
to Detect Memory Errors

Jinsheng Ba, Gregory J. Duck, and Abhik Roychoudhury

National University of Singapore

ACM SIGSOFT Distinguished Paper Award (ASE’22)

• A memory error is any access not intended by the programmer:
• Buffer overflow

• Use-after-free

• Memory errors are a common source of security vulnerability.
• Chrome: 70% of all security bugs are memory safety issues*.

• Fuzzing and memory sanitizer are popular techniques to detect
memory errors.

Memory Errors

Background Method Evaluation Conclusion

2

Problem

*https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/

Fuzzing

3

Fuzzer test cases

• Fuzzing (e.g. AFL) is an automatic test case generation method.

• A (biased) random search to generate test cases that lead to a crash
(memory error).

However, not all memory errors lead to crashes!

Background Method Evaluation ConclusionProblem

Memory Sanitizer

• Sanitizers (e.g. Address Sanitizer) use instrumentation to detect
memory errors, even if no crash would otherwise occur:

• Sanitizers make memory errors visible, but require test cases.

4

if (isOutOfBounds(p+i))
abort()

p[i] = v

Sanitizer
Instrumentation

Background Method Evaluation ConclusionProblem

Fuzzing + Sanitizer

• It is natural to combine fuzzing with sanitizers:

• The fuzzer generates test cases, and the sanitizer identifies memory
errors.

5

Fuzzer test cases

Sanitizer

Background Method Evaluation ConclusionProblem

Problem

• Significant performance overhead.

Fuzzer

Fuzzer

2.36X*
Overhead

* AFL + Address Sanitizer (ASan) vs AFL in testing libpng.

Sanitizer

Background Method Evaluation ConclusionProblem

Why the performance overhead is huge?

• fork() is slow, especially when the program uses a lot of memory.

• More memory ⇒more copying ⇒ slower

7

Fuzzer
Test case

Fork

The subject is usually
forked thousands of
times per second.

Background Method Evaluation ConclusionProblem

Sanitizers Use a Lot Of Memory

• Sanitizers (like ASan) work by memory poisoning:

• Redzone memory is poisoned ⇒ program cannot access
• Detects buffer overflows

• Detects use-after-free

8

Background Method Evaluation ConclusionProblem

REDZONE

Sanitizers Use a Lot Of Memory

• ASan tracks poisoned memory using a disjoint metadata.

9

0xffffffff

0x40000000

Main Memory

Disjoint metadata

Mapping

This extra metadata slows down fork() a lot!

0x3fffffff
0x28000000

REDZONE

OBJECT

OBJECT

OBJECT

Background Method Evaluation ConclusionProblem

Previous Works

• SANRAZOR/ASan--: Remove redundant checking

10

0xffffffff

0x40000000

Main Memory

Mapping

0x3fffffff
0x28000000

• FuZZan: Compact the metadata

The performance overhead is
improved, but still significant.

REDZONE

REDZONE

OBJECT

OBJECT

OBJECT

Background Method Evaluation ConclusionProblem

Our Idea

• Since disjoint metadata slows down fork() a lot, can we eliminate it?

• Yes! We represent poisoned memory by Randomized Embedded Tokens.

11

0xffffffff

0x40000000

Main Memory

Disjoint metadata

Mapping

REDZONE

REDZONE

OBJECT

OBJECT

OBJECT

0x3fffffff
0x28000000

Background Method Evaluation ConclusionProblem

Our Design

• The presence of the token can determine if the memory is poisoned
or not.

12

The disjoint metadata is eliminated.

TOKEN = random() if (p[i] == TOKEN)
abort()

p[i] = v

Token size aligned

Background Method Evaluation ConclusionProblem

Challenge 1: False Positive
• The content in objects could be the same as the random token.

• Our implementation uses a 64-bit token size.

13

Token Size
More false positives Lower bug detection granularity

In theory, the first false positive occurs after ∼584.9 years of CPU time.
In practice, we rerun program with a new random token to exclude false positives.

Background Method Evaluation ConclusionProblem

Challenge 2: Byte-accurate Boundary Checking

• We use the last three bits in the token to store the boundary of last object.

14

struct Token {uint64_t random :61; uint64_t boundary :3;};

Background Method Evaluation ConclusionProblem

Evaluation--Detection Capability

• The number of detected bugs (Juliet Benchmark).

15

CWE ID Total ASan ReZZan ReZZanlite

Stack Buffer Overflow (121) 2,860 2,856 2,860 2,380

Heap Buffer Overflow (122) 3,246 3,189 3,246 2,724

Buffer Underwrite (124) 928 928 890 890

Buffer Overread (126) 630 610 630 630

Buffer Underread (127) 928 928 880 880

Use After Free (416) 392 392 392 392

Pass rate: 99.10% 99.04% 87.89%

ReZZan has the same level of bug detection capability as ASan.

ReZZan : Byte-accurate
ReZZanlite : Token-accurate

Background Method Evaluation ConclusionProblem

Evaluation--Performance Overhead

• The average throughput (execs/sec)

16

Average
performance loss:

ReZZanlite: -12.45%

ReZZan: -21.34%

FuZZan: -50.11%

ASan: -57.67%

Background Method Evaluation ConclusionProblem

Evaluation--Bug Finding Effectiveness

The time (second) to find the corresponding bug (Google fuzzer-test-suite).

17

Subject ASan FuZZan ReZZan ReZZanlite Factor

c-ares 80.00 47.65 22.65 171.95 3.53

json 485.70 410.70 320.05 148.85 1.52

libxml2 29,328.75 21,462.88 6,301.00 6,318.63 4.65

openssl (A) 1,736.40 223.50 210.15 219.25 8.26

openssl (B) 26,589.50 21,431.00 12,750.00 - 2.09

pcre2 7,994.80 6,438.60 3,900.30 3,090.95 2.05

Average: 3.68X

ReZZan exposes bugs 3.68 times faster than Asan.

Background Method Evaluation ConclusionProblem

© Copyright National University of Singapore. All Rights Reserved.

Conclusion

Background Method Evaluation ConclusionProblem

https://github.com/bajinsheng/ReZZan

	Default Section
	Slide 1: Efficient Greybox Fuzzing to Detect Memory Errors
	Slide 2: Memory Errors
	Slide 3: Fuzzing
	Slide 4: Memory Sanitizer
	Slide 5: Fuzzing + Sanitizer

	Problem
	Slide 6: Problem
	Slide 7: Why the performance overhead is huge?

	Why the performance overhead is huge?
	Slide 8: Sanitizers Use a Lot Of Memory
	Slide 9: Sanitizers Use a Lot Of Memory
	Slide 10: Previous Works
	Slide 11: Our Idea

	Our Design
	Slide 12: Our Design

	False Positive
	Slide 13: Challenge 1: False Positive

	Challenge 2: Byte-accurate Boundary Checking
	Slide 14: Challenge 2: Byte-accurate Boundary Checking

	Implementation
	Slide 15: Evaluation--Detection Capability

	Evaluation--Performance Overhead
	Slide 16: Evaluation--Performance Overhead
	Slide 17: Evaluation--Bug Finding Effectiveness
	Slide 18: Conclusion

