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• A memory error is any access not intended by the programmer:
• Buffer overflow

• Use-after-free

• Memory errors are a common source of security vulnerability.
• Chrome: 70% of all security bugs are memory safety issues*.

• Fuzzing and memory sanitizer are popular techniques to detect 
memory errors.

Memory Errors
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Problem

*https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/



Fuzzing
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Fuzzer test cases

• Fuzzing (e.g. AFL) is an automatic test case generation method.

• A (biased) random search to generate test cases that lead to a crash 
(memory error).

However, not all memory errors lead to crashes!
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Memory Sanitizer

• Sanitizers (e.g. Address Sanitizer) use instrumentation to detect 
memory errors, even if no crash would otherwise occur:

• Sanitizers make memory errors visible, but require test cases.

4

if (isOutOfBounds(p+i))
abort()

p[i] = v

Sanitizer 
Instrumentation
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Fuzzing + Sanitizer

• It is natural to combine fuzzing with sanitizers:

• The fuzzer generates test cases, and the sanitizer identifies memory 
errors.
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Fuzzer test cases

Sanitizer
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Problem

• Significant performance overhead.

Fuzzer

Fuzzer

2.36X* 
Overhead

* AFL + Address Sanitizer (ASan) vs AFL in testing libpng.

Sanitizer
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Why the performance overhead is huge?

• fork() is slow, especially when the program uses a lot of memory.

• More memory ⇒more copying ⇒ slower
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Fuzzer
Test case

Fork

The subject is usually 
forked thousands of 
times per second.
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Sanitizers Use a Lot Of Memory

• Sanitizers (like ASan) work by memory poisoning:

• Redzone memory is poisoned ⇒ program cannot access
• Detects buffer overflows

• Detects use-after-free
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REDZONE

Sanitizers Use a Lot Of Memory

• ASan tracks poisoned memory using a disjoint metadata.

9

0xffffffff 

0x40000000

Main Memory

Disjoint metadata

Mapping

This extra metadata slows down fork() a lot!

0x3fffffff 
0x28000000

REDZONE

OBJECT

OBJECT

OBJECT

Background Method Evaluation ConclusionProblem



Previous Works

• SANRAZOR/ASan--: Remove redundant checking
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• FuZZan: Compact the metadata 

The performance overhead is 
improved, but still significant.
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Our Idea

• Since disjoint metadata slows down fork() a lot, can we eliminate it?

• Yes!  We represent poisoned memory by Randomized Embedded Tokens.
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Our Design

• The presence of the token can determine if the memory is poisoned 
or not.
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The disjoint metadata is eliminated.

TOKEN = random() if (p[i] == TOKEN)
abort()

p[i] = v

Token size aligned
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Challenge 1: False Positive
• The content in objects could be the same as the random token.

• Our implementation uses a 64-bit token size.
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Token Size
More false positives Lower bug detection granularity 

In theory, the first false positive occurs after ∼584.9 years of CPU time.
In practice, we rerun program with a new random token to exclude false positives.
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Challenge 2: Byte-accurate Boundary Checking

• We use the last three bits in the token to store the boundary of last object.
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struct Token {uint64_t random :61; uint64_t boundary :3;};

Background Method Evaluation ConclusionProblem



Evaluation--Detection Capability 

• The number of detected bugs (Juliet Benchmark).
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CWE ID Total ASan ReZZan ReZZanlite

Stack Buffer Overflow (121)   2,860 2,856 2,860 2,380

Heap Buffer Overflow (122)    3,246 3,189 3,246 2,724

Buffer Underwrite (124)       928 928 890 890

Buffer Overread (126)         630 610 630 630

Buffer Underread (127)        928 928 880 880

Use After Free (416) 392 392 392 392

Pass rate: 99.10% 99.04% 87.89%

ReZZan has the same level of bug detection capability as ASan.

ReZZan : Byte-accurate
ReZZanlite : Token-accurate
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Evaluation--Performance Overhead

• The average throughput (execs/sec)
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Average 
performance loss:

ReZZanlite: -12.45%

ReZZan: -21.34%

FuZZan:      -50.11%

ASan:         -57.67%
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Evaluation--Bug Finding Effectiveness

The time (second) to find the corresponding bug (Google fuzzer-test-suite).
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Subject ASan FuZZan ReZZan ReZZanlite Factor

c-ares 80.00 47.65 22.65 171.95 3.53

json 485.70 410.70 320.05 148.85 1.52

libxml2 29,328.75 21,462.88 6,301.00 6,318.63 4.65

openssl (A) 1,736.40 223.50 210.15 219.25 8.26

openssl (B) 26,589.50 21,431.00 12,750.00 - 2.09

pcre2 7,994.80 6,438.60 3,900.30 3,090.95 2.05

Average: 3.68X

ReZZan exposes bugs 3.68 times faster than Asan.
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Conclusion
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https://github.com/bajinsheng/ReZZan
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