
Jinsheng Ba, Manuel Rigger

National University of Singapore

Testing Database Engines
via Query Plan Guidance

Testing Database Engines via Query Plan Guidance

2*Most Widely Deployed and Used Database Engine: https://www.sqlite.org/mostdeployed.html

Any bug has a
potentially severe

consequence.

Our method finds 53 unique previously-unknown bugs.

Background Method Evaluation ConclusionProblem

Testing Database Engines via Query Plan Guidance

3

• Test oracles are used to detect bugs.

• For example: Non-optimizing Reference Engine Construction (NoREC)

SELECT * FROM t0 WHERE (t0.c0>0);

SELECT (t0.c0>0) FROM t0;

Whether the number of TRUEs of
the second query equals to the
number of rows of the first query

{|1|2|}

{}

NoREC

Background Method Evaluation ConclusionProblem

• Given the test oracles to detect bugs, how do we generate test
cases?

4

Oracle

A test case

Database

Query

Execute

Problem: How To Generate Test Cases?

Background Method Evaluation ConclusionProblem

Previous Test Case Generation Methods

5

• Generation-based methods.

• Examples: SQLSmith[2],
SQLancer[3]

[1] https://www.cockroachlabs.com/docs/stable/select-clause.html
[2] https://github.com/anse1/sqlsmith
[3] https://github.com/sqlancer/sqlancer

• Restricted to the grammar and hard to
generate diverse test cases.

Background Method Evaluation ConclusionProblem

The SQL grammar[1] for CockroachDB.

https://www.cockroachlabs.com/docs/stable/select-clause.html
https://github.com/anse1/sqlsmith
https://github.com/sqlancer/sqlancer

• Mutation-based methods (Coverage-guided Grey-box fuzzing).

Previous Test Case Generation Methods

6
[1] Liang, Y., Liu, S., & Hu, H. (2022). Detecting Logical Bugs of {DBMS} with Coverage-based Guidance. In 31st USENIX Security Symposium (USENIX Security 22) (pp. 4309-4326).
[2] https://www.sqlite.org/testing.html#mcdc

SQLite Documents[2].

• Insufficient proportion of valid test cases. (SQLRight[1]: 40%)

• Code coverage is insufficient to explore DBMSs’ bugs.

• Example: SQLRight

Background Method Evaluation ConclusionProblem

Not all bugs have
been found.

https://www.sqlite.org/testing.html#mcdc

Testing Database Engines via Query Plan Guidance

7

Idea: Guiding test case generation towards
unseen query plans, aiming to cover more
behaviours.

Background Method Evaluation ConclusionProblem

What is a Query Plan?

8

• A query plan is a tree of operations that describes how a SQL statement is
executed by a specific DBMS.

t0

c0 c0

2 0

t1

SELECT * FROM t0 LEFT
JOIN t1 WHERE t1.c0==0;

|--SCAN t0
`--SCAN t1 LEFT-JOIN

`--Filter
{2|0}

Input Query Plan Output

Background Method Evaluation ConclusionProblem

EXPLAIN

What is a Query Plan?

9

• A query plan is a tree of operations that describes how a SQL statement is
executed by a specific DBMS.

• DBMSs typically expose query plans to users for tuning the performance
of queries.

• How to scan tables? (full scan, partial scan with index…)

• How to join tables? (hash join, merge join…)

• Where to apply filter? (after join, after table scan…)

Background Method Evaluation ConclusionProblem

Query Plan Guidance

10

SELECT * FROM t0 LEFT JOIN t1
WHERE t1.c0==0;

|--Filter
|--SCAN t0
`--SCAN t1 LEFT-JOIN

|--SCAN t0
`--SCAN t1 LEFT-JOIN

`--Filter

{2|0}

|--Filter
|--SCAN t

|--SCAN t0
`--USE TEMP B-TREE FOR ORDER BY

Query A

Query B

Query C

… …

Background Method Evaluation ConclusionProblem

Query Plan Study

11

DBMS Bugs
Query Plans

Sum Unique Length

CockroachDB 68 37 32 3.43

DuckDB 75 59 18 2.00

H2 19 10 7 3.70

MariaDB 7 5 5 1.00

MySQL 40 35 22 1.03

PostgreSQL 31 9 3 2.33

SQLite 193 118 62 2.14

TiDB 62 43 32 5.07

*https://github.com/sqlancer/bugs: 495 bugs for DBMSs.

Avg: 2.59Unique/Sum=57.28%

Background Method Evaluation ConclusionProblem

• Query plans of the queries in previously-found bugs are:
• 1) Diverse.

• 2) Compact and simple.

Step 1 & 2: Query Generation and Validation

12

We reused the existing
database and query
generation approaches. Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation

Background Method Evaluation ConclusionProblem

Step 3: Query Plan Collection

13

Insert unique query
plans to the query
plan pool

EXPLAIN QUERY PLAN
SELECT ...

Query Plan Collection

SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

Query Plan Pool

3

Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation

Background Method Evaluation ConclusionProblem

Step 4: Database State Mutation

14

Mutate the database
state if no query plan
has been observed for
a certain number of
iterations

EXPLAIN QUERY PLAN
SELECT ...

Query Plan Collection

SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

Query Plan Pool

3

CREATE INDEX i0 ON t2 (c0) WHERE c0

1 2 3 k…

4 Database State Mutation

Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation

Background Method Evaluation ConclusionProblem

Approach Overview

15

New query plans are
able to be observed,
and new bugs may be
found

EXPLAIN QUERY PLAN
SELECT ...

Query Plan Collection

SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

Query Plan Pool

3

CREATE INDEX i0 ON t2 (c0) WHERE c0

1 2 3 k…

4 Database State Mutation

Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SCAN t USING COVERING INDEX i; SCAN t; SCAN t;
RIGHT-JOIN t; SCAN t;

i0

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation

Restart

Background Method Evaluation ConclusionProblem

Evaluation: New Bugs

16

DBMS Crash Internal Error Logic All
SQLite 0 5 23 28
TiDB 2 4 3 9
CockroachDB 3 11 2 16
Sum: 5 20 28 53

With the help of QPG, we found 53 unique, previously unknown bugs.

Several bugs had
been hidden for

more than six years!

Background Method Evaluation ConclusionProblem

Evaluation: Covering unique query plans

17

The average number of unique query plans across 10 runs in 24 hours.

QPG exercises

4.85–408.48× more unique query plans than a naive random generation method (SQLancer),

7.46× more than a code-coverage guidance method (SQLRight).

Background Method Evaluation ConclusionProblem

© Copyright National University of Singapore. All Rights Reserved.

Conclusion

Background Method Evaluation ConclusionProblem

Query plans can efficiently guide test-case generation in a black-box manner.

Github Author

	Default Section
	Slide 1: Testing Database Engines via Query Plan Guidance
	Slide 2: Testing Database Engines via Query Plan Guidance
	Slide 3: Testing Database Engines via Query Plan Guidance

	Problem: How To Generate Test Cases?
	Slide 4: Problem: How To Generate Test Cases?
	Slide 5: Previous Test Case Generation Methods

	Previous Test Case Generation Methods
	Slide 6: Previous Test Case Generation Methods

	Testing Database Engines via Query Plan Guidance
	Slide 7: Testing Database Engines via Query Plan Guidance
	Slide 8: What is a Query Plan?
	Slide 9: What is a Query Plan?

	Query Plan Guidance
	Slide 10: Query Plan Guidance
	Slide 11: Query Plan Study
	Slide 12: Step 1 & 2: Query Generation and Validation
	Slide 13: Step 3: Query Plan Collection
	Slide 14: Step 4: Database State Mutation

	Approach Overview
	Slide 15: Approach Overview

	Evaluation: New Bugs
	Slide 16: Evaluation: New Bugs
	Slide 17: Evaluation: Covering unique query plans
	Slide 18: Conclusion

