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2*Most Widely Deployed and Used Database Engine: https://www.sqlite.org/mostdeployed.html

Any bug has a 
potentially severe 

consequence.

Our method finds 53 unique previously-unknown bugs.

Background Method Evaluation ConclusionProblem
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• Test oracles are used to detect bugs.

• For example: Non-optimizing Reference Engine Construction (NoREC)

SELECT * FROM t0 WHERE (t0.c0>0);

SELECT (t0.c0>0) FROM t0;

Whether the number of TRUEs of 
the second query equals to the 
number of rows of the first query

{|1|2|}

{}

NoREC
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• Given the test oracles to detect bugs, how do we generate test 
cases?
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Oracle

A test case

Database

Query

Execute

Problem: How To Generate Test Cases?
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Previous Test Case Generation Methods
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• Generation-based methods.

• Examples: SQLSmith[2], 
SQLancer[3]

[1] https://www.cockroachlabs.com/docs/stable/select-clause.html
[2] https://github.com/anse1/sqlsmith
[3] https://github.com/sqlancer/sqlancer

• Restricted to the grammar and hard to 
generate diverse test cases.

Background Method Evaluation ConclusionProblem

The SQL grammar[1] for CockroachDB.

https://www.cockroachlabs.com/docs/stable/select-clause.html
https://github.com/anse1/sqlsmith
https://github.com/sqlancer/sqlancer


• Mutation-based methods (Coverage-guided Grey-box fuzzing).

Previous Test Case Generation Methods
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[1] Liang, Y., Liu, S., & Hu, H. (2022). Detecting Logical Bugs of {DBMS} with Coverage-based Guidance. In 31st USENIX Security Symposium (USENIX Security 22) (pp. 4309-4326).
[2] https://www.sqlite.org/testing.html#mcdc

SQLite Documents[2].

• Insufficient proportion of valid test cases. (SQLRight[1]: 40%)

• Code coverage is insufficient to explore DBMSs’ bugs.

• Example: SQLRight
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Not all bugs have 
been found.

https://www.sqlite.org/testing.html#mcdc
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Idea: Guiding test case generation towards 
unseen query plans, aiming to cover more 
behaviours.
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What is a Query Plan?
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• A query plan is a tree of operations that describes how a SQL statement is 
executed by a specific DBMS. 

t0

c0 c0

2 0

t1

SELECT * FROM t0 LEFT 
JOIN t1 WHERE t1.c0==0;

|--SCAN t0
`--SCAN t1 LEFT-JOIN

`--Filter
{2|0}

Input Query Plan Output

Background Method Evaluation ConclusionProblem

EXPLAIN



What is a Query Plan?

9

• A query plan is a tree of operations that describes how a SQL statement is 
executed by a specific DBMS. 

• DBMSs typically expose query plans to users for tuning the performance 
of queries.

• How to scan tables? (full scan, partial scan with index…)

• How to join tables? (hash join, merge join…)

• Where to apply filter? (after join, after table scan…)
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SELECT * FROM t0 LEFT JOIN t1 
WHERE t1.c0==0;

|--Filter
|--SCAN t0
`--SCAN t1 LEFT-JOIN

|--SCAN t0
`--SCAN t1 LEFT-JOIN

`--Filter

{2|0}

|--Filter
|--SCAN t

|--SCAN t0 
`--USE TEMP B-TREE FOR ORDER BY 

Query A

Query B

Query C

… …
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DBMS Bugs
Query Plans

Sum Unique Length

CockroachDB 68 37 32 3.43

DuckDB      75 59 18 2.00

H2          19 10 7 3.70

MariaDB     7 5 5 1.00

MySQL       40 35 22 1.03

PostgreSQL  31 9 3 2.33

SQLite      193 118 62 2.14

TiDB        62 43 32 5.07

*https://github.com/sqlancer/bugs: 495 bugs for DBMSs.

Avg: 2.59Unique/Sum=57.28%
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• Query plans of the queries in previously-found bugs are:
• 1) Diverse.

• 2) Compact and simple.



Step 1 & 2: Query Generation and Validation
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We reused the existing 
database and query 
generation approaches. Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0 

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation
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Step 3: Query Plan Collection
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Insert unique query 
plans to the query 
plan pool

EXPLAIN QUERY PLAN 
SELECT ...

Query Plan Collection

SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

Query Plan Pool

3

Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0 

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation
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Step 4: Database State Mutation
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Mutate the database 
state if no query plan 
has been observed for 
a certain number of 
iterations

EXPLAIN QUERY PLAN 
SELECT ...

Query Plan Collection

SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

Query Plan Pool

3

CREATE INDEX i0 ON t2 (c0) WHERE c0

1 2 3 k…

4 Database State Mutation

Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0 

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation
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Approach Overview
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New query plans are 
able to be observed, 
and new bugs may be 
found

EXPLAIN QUERY PLAN 
SELECT ...

Query Plan Collection

SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

Query Plan Pool

3

CREATE INDEX i0 ON t2 (c0) WHERE c0

1 2 3 k…

4 Database State Mutation

Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SCAN t USING COVERING INDEX i; SCAN t; SCAN t; 
RIGHT-JOIN t; SCAN t;

i0

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0 

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation

Restart
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Evaluation: New Bugs
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DBMS Crash Internal Error Logic All
SQLite 0 5 23 28
TiDB 2 4 3 9
CockroachDB 3 11 2 16
Sum: 5 20 28 53

With the help of QPG, we found 53 unique, previously unknown bugs.

Several bugs had 
been hidden for 

more than six years!

Background Method Evaluation ConclusionProblem



Evaluation: Covering unique query plans
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The average number of unique query plans across 10 runs in 24 hours.

QPG exercises 

4.85–408.48× more unique query plans than a naive random generation method (SQLancer),

7.46× more than a code-coverage guidance method (SQLRight).

Background Method Evaluation ConclusionProblem
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Conclusion

Background Method Evaluation ConclusionProblem

Query plans can efficiently guide test-case generation in a black-box manner.

Github Author
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