Testing Database Engines
via Query Plan Guidance

Jinsheng Ba, Manuel Rigger
National University of Singapore

| Database Engines

| ?S Lit-
m Most Wide “~ved p zie POStgre SQL

MysoL: =o-

‘ Any bug has a
: potentially severe
'@' | consequence. m T' D B
CockroachDB

Our method finds 53 unique previously-unknown bugs.

*Most Widely Deployed and Used Database Engine: https://www.sglite.org/mostdeployed.html

| Testing Database Engines

* Test oracles are used to detect bugs.

* For example: Non-optimizing Reference Engine Construction (NoREC)

SELECT * FROM t@ WHERE (t0.c0>0);

SELECT (t©.c0>0) FROM to;

{11121}

1}

Whether the number of TRUEs of
the second query equals to the
number of rows of the first query

| Problem: How To Generate Test Cases?

 Given the test oracles to detect bugs, how do we generate test

cases?
I e
" (]
Atestcase 4 Query 'ﬂ
b,
I g Execute Oracle
-

Database

| Previous Test Case Generation Methods

* Generation-based methods. o (suxcr) [5

* Restricted to the grammar and hard to
generate diverse test cases.

DISTINCT

* Examples: SQLSmith(?, T(] L.—.—(HHFJ‘

SQlancerl!3!

1—(HA\!ING)—' a_expr I—J 1—(WINI}OW]—| window_definition_list I-J

The SQL grammar!! for CockroachDB.
[1] https://www.cockroachlabs.com/docs/stable/select-clause.html

[2] https://github.com/ansel/sqlsmith 5
[3] https://github.com/sqlancer/sqglancer

https://www.cockroachlabs.com/docs/stable/select-clause.html
https://github.com/anse1/sqlsmith
https://github.com/sqlancer/sqlancer

| Previous Test Case Generation Methods

* Mutation-based methods (Coverage-guided Grey-box fuzzing).
* Insufficient proportion of valid test cases. (SQLRight(!: 40%)

* Code coverage is insufficient to explore DBMSs’ bugs.

Not all bugs have
been found.

SQLite uses testcase() macros as describeg-n the viou
subsection to make sure that everyConditrdn in a bit-vecto
decision takes on every possible outcome. In this way, SQLite
also achieves 100% MC/DC in addition to 100% branch coverage.

SQLite Documents!?!.

* Example: SQLRight

[1] Liang, Y., Liu, S., & Hu, H. (2022). Detecting Logical Bugs of {DBMS} with Coverage-based Guidance. In 31st USENIX Security Symposium (USENIX Security 22) (pp. 4309-4326).
[2] https://www.sqlite.org/testing.html#mcdc

https://www.sqlite.org/testing.html#mcdc

Method

via Query Plan Guidance

ldea: Guiding test case generation towards
unseen query plans, aiming to cover more
behaviours.

Method

|What is a Query Plan?

* A query plan is a tree of operations that describes how a SQL statement is
executed by a specific DBMS.

t0 tl
c0 c0

EXPLAIN SELECT * FROM t@ LEFT {2|0}
JOIN t1 WHERE t1.c0==0;

Input Query Plan Output

Method

|What is a Query Plan?

* A query plan is a tree of operations that describes how a SQL statement is
executed by a specific DBMS.

* DBMSs typically expose query plans to users for tuning the performance
of queries.

* How to scan tables? (full scan, partial scan with index...) @ ®
* How to join tables? (hash join, merge join...)
* Where to apply filter? (after join, after table scan...) m

Method

| Query Plan Guidance

SELECT * FROM t@ LEFT JOIN t1 [--SCAN to 510
WHERE t1.c0==0; *_-SCAN t1 LEFT-JOIN {210}
--Filter
Query A [--Filter
[--SCAN t
Query B [--SCAN t@
“--USE TEMP B-TREE FOR ORDER BY
Query ¢ [--Filter

[--SCAN te
*--SCAN t1 LEFT-JOIN

LE N} 10

Method

| Query Plan Study

* Query plans of the queries in previously-found bugs are:
* 1) Diverse.
» 2) Compact and simple.

Query Plans
DBMS Bugs Sum Un\ilque Length
CockroachDB 68 37 32 3.43
DuckDB 75 59 18 2.00
H2 19 10 7 3.70
MariaDB 7 5 5 1.00
MySQL 40 35 22 1.03
PostgreSQL 31 9 3 2.33
SQlite 193 118 62 2.14
TiDB 62 43 32 5.07

Unique/Sum=57.28% Avg: 2.59

*https://github.com/sglancer/bugs: 495 bugs for DBMSs. 11

Method

|Step 1 & 2: Query Generation and Validation

Database States
t1 2 t3

We reused the existing wla|[o] [

database and query 2 | 1
generation approaches.g O TR

l

Query Generation and Validation
SELECT * FROM t2 RIGHT JOIN t3 ON d@

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

12

Method

| Step 3: Query Plan Collection

Database States
t1 2 t3

Insert unique query olallo] [
2 | null 1
plans to the query

plan pool g Database B

l

Query Generation and Validation

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0
LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

EXPLAIN QUERY PLAN
SELECT ...

@ Query Plan Collection

Query Plan Pool
—Jp | SCANT; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

13

| Step 4: Database State Mutation

Database States CREATE INDEX i0 ON t2 (c0) WHERE cO

t1 2 t3 <«]

MUtate the database 0|4 ‘ <0 ‘ <0 @Database State Mutation
state if no query plan = .

4
has been observed for E Database B "%fﬁ;’fzg 4,0%"?5.
a certain number of l ‘f...A"ff*...

Iiterations Query Generation and Validation @

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0
LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

EXPLAIN QUERY PLAN
SELECT ...

@ Query Plan Collection

Query Plan Pool
—Jp | SCANT; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

14

Method

| Approach Overview

Database States CREATE INDEX i0 ON t2 (c0) WHERE cO

t1 t2 (i0) t3 <
New query plans are ofal[o] [« Database StatelMutation
able to be observed, =)
and new bugs may be E Database B "%ffsﬁf? o ’%?5
found e A"’

Query Generation and Validation @

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0
LEFT JOIN t1 ON c=3 WHERE t1.a<>0;
EXPLAIN QUERY PLAN

SELECT ...
@ Query Plan Collection

Query Plan Pool

Restart — | SCANGSCAN G SCAN G RIGHTJOIN G SCAN G

—_——— e S - 15

Evaluation Conclusion

(2) By Richard Hipp (drh) on 2022-07-15 12:59:59 in reply to 1 [link] [source]

‘ Eva | U at | on: N ew B U gS This bug goes back almost & years to check-in ddb5f0558c445699 on 2016-09-07, ve

Several bugs had
been hidden for
more than six years!

&

DBMS Crash Internal Error Logic All
SQlLite 0 5 23 28
TiDB 2 4 3 9
CockroachDB 3 11 2 16
Sum: 5 20 28 53

With the help of QPG, we found 53 unique, previously unknown bugs.

16

Method

| Evaluation: Covering unique query plans
0-I."_"_'-_-_:'_-___I____I____I_ | /

Time (in hours)

—— SQlancer ---- SQlLancer+QPG --- SQLRight
The average number of unigue query plans across 10 runs in 24 hours.

QPG exercises
4.85-408.48x% more unique query plans than a naive random generation method (SQLancer),
7.46x more than a code-coverage guidance method (SQLRight).

17

Problem

Background

Conclusion

Method

| Problem: How To Generate Test Cases?

= Given the test oracles to detect bugs, how do we generate test
cases?

v
saL .
[soL] 4 e

Atestcase Query ﬂ]
g Execute Oracle

Database

|__Background | __Problem | Method J _Evaluation 1 __Conclusion]|

| Query Plan Guidance

e f2lo)

Query A
Query B

Query C

L__Problem | ___Method

| Previous Test Case Generation Methods

* Mutation-based methods (Coverage-guided Grey-box fuzzing).
+ Insufficient proportion of valid test cases. (SQLRight!™: 40%)

* Code coverage is insufficient to explore DBMSs’ bugs.
Not all bugs have

(0 uses vcanls macrs 8s desribe i thel_yviou been'found.
Isubsection to make sure that every&ondibdn in 2 Bit-vectd
Fiocson tkes on every possils atcome. I this way, SqURe
‘also achieves 100% MC/DC In addition to 100% branch coverage.

sQLite Documentsl2),

* Example: SQLRight

Evaluation

01 e e et

| Method ___| Conclusion

| Approach Overview

(7)Pssbies States CREATE INDEX 1 O
U o n

(O

New query plans are

able to be observed, =
and new bugs may be —
found

\ —>
EXPLAIN QUERY PLAN
SELECT ..

(@) cuery pmcotesion

Conclusion

Github Author

|__Background | __Problem | Method __J __Evaluation] Conclusion]

via Query Plan Guidance

Idea: Guiding test case generation towards
unseen query plans, aiming to cover more
behaviours.

Method

2By Richard Hipp (deh) on 202207-16 12:69:89 n reply to 1 (k] [source]

Ths g g00s back amost & yews
| Evaluation: New Bugs | s o oo
¢~ Several bugs had
g been hidden for
. more than six years!
\\‘,)W/

DBMS Crash __Internal Error Logic All
sQLite 0 5 23 28
TiDB 2 4 3 9
CockroachDB 3 11 2 16
Sum: 5 20 28 53

{With the help of QPG, we found 53 unique, previously unknown bugs.]

Query plans can efficiently guide test-case generation in a black-box manner.

	Default Section
	Slide 1: Testing Database Engines via Query Plan Guidance
	Slide 2: Testing Database Engines via Query Plan Guidance
	Slide 3: Testing Database Engines via Query Plan Guidance

	Problem: How To Generate Test Cases?
	Slide 4: Problem: How To Generate Test Cases?
	Slide 5: Previous Test Case Generation Methods

	Previous Test Case Generation Methods
	Slide 6: Previous Test Case Generation Methods

	Testing Database Engines via Query Plan Guidance
	Slide 7: Testing Database Engines via Query Plan Guidance
	Slide 8: What is a Query Plan?
	Slide 9: What is a Query Plan?

	Query Plan Guidance
	Slide 10: Query Plan Guidance
	Slide 11: Query Plan Study
	Slide 12: Step 1 & 2: Query Generation and Validation
	Slide 13: Step 3: Query Plan Collection
	Slide 14: Step 4: Database State Mutation

	Approach Overview
	Slide 15: Approach Overview

	Evaluation: New Bugs
	Slide 16: Evaluation: New Bugs
	Slide 17: Evaluation: Covering unique query plans
	Slide 18: Conclusion

