Testing Database Engines|
via Query Plans

Jinsheng Ba

National University of Singapore

QL
=
o
o
O
(@)
i
W
Y—
o
=
s
()
s
(=
=)
©
=
s
o+
©
—

| Database Management Systems (DBMSs)

Systems that store, process,

q manipulate, and query data.
: ﬂ The global DBMSs market has
— grown to $163.93 billion in

2023 at a high compound

Wiecheed2 annual growth rate of 15.4%*.

* https://www.researchandmarkets.com/reports/5735140/database-software-global-market-report#product--related-products.
Figure: https://medium.com/@sewwandithilakarathna2000/dbms-database-management-system-bc2d86bdba2 3

| Database Management Systems (DBMSs)

t0 tl
c0
2

(o}
o

o

{121}

SELECT * FROM to;

SQL Query Result

| Database Management Systems (DBMSs)

o
(o}
o

{]1|} Incorrect result

N
o

z Unexpected slowdown
,’l\\
SELECT * FROM t0;
x % Crash
SQL Query Result

[Problem: How to efficiently and effectively find bugs in DBMSs?]

5

Core Challenges For Automatic Testing

v!
Test Cases v Results
|

 Test oracle (bug identification)
 Logic bugs: How to know the result is incorrect?
» Performance issues: How to know an execution time is unexpected?

g (0} 157 552
®

 Test case generation
« How to automatically explore huge states of target systems?

Generating Validating

State-of-the-art Research

Fuzzing for crash bugs

Zhong et al. Squirrel (CCS’20)
Liang et al. LEGO (ICDE’23)
Jiang et al. DynSQL (SEC’23)
Fu et al. Sedar (ICSE’24)

Cannot find logic bugs
and performance issues.

Grammar-based Test Cases

Generation

Seltenreich et al. (SQLSmith)
Fu et al. Griffin (ASE’22)
Liang et al. SQLRight (SEC’23)

Restricted test cases.

Differential/Metamorphic testing for logic bugs

Slutz RAGS (VLDB’98)
Rigger et al. SQLancer (OSDI’20, ESEC/FSE’20, OOPSLA’20)

Song et al. DQE (ICSE’23)

Cannot generate diverse test cases.

DBMS internal states neering for logic bugs
are not considered. [SIGMOD’23)

Not intuitive to understand.

Differential/Metamorphic testing for performance bugs

Liu et al. AMOEBA (ICSE’22)
Jung et al. APOLLO (VLDB’22)

Find regression bugs only or has a high false alarm rate.

hesis Statement

Efficient and effective testing of database engines
can be achieved by utilizing the internal execution
information provided by query plans.

What is a Query Plan?

* A query plan is a tree of operations that specifies how a SQL statement is
execttgtedtlby a specific DBMS.

c0 c0

1 1

2

3

4

2 Textual Query Plan (Simplified)
7

8

9 (num of row=1)

10 . e

expLATN | SELECT * FROM t@ LEFT JOIN t1
ON t0.c@=t1.c@ WHERE t@.c0=1; [Fullscantoj [Fu||5cant1]

{111}

(num of rows=10) (num of row=1)

SQL Query Plan Result 9

What is a Query Plan?

* A query plan is a tree of operations that describes how a SQL statement is
executed by a specific DBMS.

* DBMSs typically expose query plans to users for tuning the performance

of queries.
Hashloin CREATE INDEX i@ ON t@(c9); o
(num of row=1) SELECT * FROM t@ LEFT JOIN t1
Materialize

1 } ON t0.cO=t1l.cO0 WHERE t@.co=1;

(num of row=1)

Materialize
(num of row=1)
I

[FuIIScantO] | FullScan t1 [IndexScan tOj FullScan t1)

(num of rows=10) (num of row=1) (num of row=1) (num of row=1)

10

Query Plan Representations

DuckDB

CockroachDB

TiDB
"""""""""""""" . QUERY PLAN T e
| id e | - -MATERIALIZE x o
Id """"""""" o | ~--SEARCH t1 USING COVERI| =
ﬁTEEiZEZQ(ﬁp 24(Build) el | --MATERIALIZE y —
| Loetection 29 | | |--SEARCH t2 USING INDEX [e || e
| election. 23 IR | - -USE TEMP B-TREE FOR OR ‘>
LIndexLookUp_11(Probe) il | s |
-selection_1@(Build) tiar TsommerE oY & ‘
| L-IndexRangeScan_s §a) | e
L-TableRowIDScan_9(Probe [CERES \ rane
___________________________ -+

Query plans are represented in DBMS-specific ways, and we empirically studied them?,

* Jinsheng Ba & Manuel Rigger. (2024). Towards a Unified Query Plan Representation. 11

Studied Target DBMSs

* The studied nine popular DBMSs ranging from various data models,
development modes, and release dates.

InfluxDB 2.7.0 Time-series 2013 28
MongoDB 6.0.5 Document 2009
MySQL 8.0.32 Relational 1995
Neodj 5.6.0 Graph 2007 22
PostgreSQL 14.7 Relational 1989
SQL Server 16.0.4015.1 Relational 1989 3
SQLite 3.41.2 Relational 1990 10
SparkSQL 33.2 Relational 2014 37

TiDB 6.5.1 Relational 2016 84

Query Plan Study

EXPLAIN (SUMMARY TRUE) SELECT tl.c0 FROM t0 INNER JOIN
tl ON t0.c0 = tl.cO0 WHERE t0.c0 < 100 GROUP BY
tl.c0 UNION SELECT cO FROM t2 WHERE c0 < 10;

HashAggregate| |(cost=62998.82..63009.32 rows=1050...)
Group Key: tl.cO
—>Append (cost=27150.40+:62996.20 rows=1050 width=4)
roup (cost=27150.40..62949.08 rows=200 width=4)
Group Key: tl.cO
—>Gather Set (cost=27150.40..62948.08 rows=400...)
Workers Planned: 2
->Group (cost=26150.38..61901.89 rows=200...)
Group Key: tl.cO
->Set Join (cost=26150.38..56906.48...)
Set Cond: (t0.c0 = tl1.c0)
—>Sort (cost=25970.60..26362.39...)
Sort Key: t0.c0
—>Parallel Seq Scan on t0 (cost=0.00...)
Filter: (c0 < 100)
—>Sort (cost=179.78..186.16 rows=2550...)
Sort Key: tl.cO
—>Seq Scan on tl (cost=0.00..35.50...)
->Bitmap Heap Scan on t2 (cost=10.74..31.37...)
Recheck Cond: (c0 < 10)
->Bitmap Index Scan on t2 pkey (cost=0.00...)
Index Cond: (c0 < 10)
Planningime: 0.124 ms

o Operations: concrete
Query plan] executed steps
representatlons share
three conceptual

Properties:
com ponents Operation-related info

Formats: JSON, XML,
TEXT

——————————————————————— SQLit - -

-7

t1l USING AUTOMATIC COVERING INDEX (c0=?)
‘--USE TEMP B-TREE FOR GROUP BY

ION USING TEMP B-TREE

“-—SEARCH t2 USING COVERING INDEX

13

Operations and Properties

—r—

HashJoin
* According to function signatures (num of row=1)
and semantic, we classified Materialize S brecsor

Producer (num of row=1)

operations into seven categories ,
and properties into four categories. FullScan t0] FullScan t1
(num of rows=10) (num of row=1)

Operations Properties

DBMS Producer Bag Join Folder Projector Executor Consumer Total Cardinality Cost Configuration Status Total

InfluxDB 0 0 0 0 0 0 0 0 5 0 0 1 6
MongoDB 14 9 0 5 3 10 3 44 16 5 18 12 51
MySQL 15 3 2 1 0 2 0 23 3 6 3 10 22
Neod;j 18 11 43 6 3 17 13 111 3 3 12 7 25
PostgreSQL 18 8 3 3 0 9 1 42 8 17 42 40 107
SQL Server 15 3 3 3 0 16 19 59 4 4 7 3 18
SQLite 3 6 3 0 0 5 0 17 0 0 3 0 3
SparkSQL 0 22
TiDB Query plan representations are commonly supported and share common 1 ”
Avg: 8 30

components, so we can develop general testing approaches.

Research Overview

1) Test oracle: identifying performance iSSUes: Jinsheng Ba & Manuel Rigger. (2024). Finding Performance Issues in Database
Engines via Cardinality Estimation Testing. In Proceedings of International Conference on Software Engineering (ICSE).

2) Test oracle: identifying logic bugs in a simple way: Jinsheng Ba & Manuel Rigger. (2024). Keep It Simple: Testing Databases
via Differential Query Plans. In Proceeding of ACM Management of Data (SIGMOD)

3) Test case generation: generating diverse test cases: Jinsheng Ba & Manuel Rigger. (2023). Testing Database Engines via
Query Plan Guidance. In Proceedings of International Conference on Software Engineering (ICSE). &

4) Building general applications on query plans: jinsheng Ba & Manuel Rigger. (2024). Towards a Unified Query Plan

Representation. (Under submission).

(num of row=1)

Materialize

SELECT * FROM
t0 LEFT JOIN t1 {111}

ON t0.co=tl1l.co Fulls =l Fulls) v
WHERE t@. C@=1; - (nlljlm ofcrfwr::m) ((rl:lum osraol\:]vzl) } e an -’

1) Identify performance issues
3) Generate diverse test cases [4) Unified plan l 2) Identify logic bugs

:

15

Cardinality Estimation
Restriction Testing
CERT

Finding Performance Issues in Database Engines
via Cardinality Estimation Testing

Jinsheng Ba
National University of Singapore
Singapore
bajinsheng@u.nus.edu

ABSTRACT

Database Management Systems (DBMSs) process a given query
by creating an execution plan, which is subsequently executed,
to compute the query’s result. Deriving an efficient query plan is
challenging, and both academia and industry have invested decades
into researching query optimization. Despite this, DBMSs are prone
to performance issues, where a DBMS produces an inefficient query
plan that might lead to the slow execution of a query. Finding such
issues is a longstanding problem and inherently difficult, because
no ground truth information on an expected execution time exists.
In this work, we propose Cardinality Estimation Restriction Testing
(CERT), a novel technique that detects performance issues through
the lens of cardinality estimation. Given a query on a database,
CERT derives a more restrictive query (e.g., by replacing a LEFT JoIN
with an INNER JOIN), whose estimated number of rows should not
exceed the number of estimated rows for the original query. CERT
tests cardinality estimators specifically, because they were shown
to be the most important component for query optimization; thus,
we expect that finding and fixing such issues might result in the
highest performance gains. In addition, we found that some other
kinds of query optimization issues are exposed by the unexpected
cardinality estimation, which can also be detected by CERT. CERT
is a black-box technique that does not require access to the source
code; DBMSs expose query plans via the expLaIN statement. CERT es-
chews executing queries, which is costly and prone to performance
fluctuations. We evaluated CERT on three widely used and mature
DBMSs, MySQL, TiDB, and CockroachDB. CERT found 13 unique
issues, of which 2 issues were fixed and 9 confirmed by the devel-
opers. We expect that this new angle on finding performance bugs
will help DBMS developers in improving DMBSs’ performance.

Manuel Rigger
National University of Singapore
Singapore
rigger@nus.edu.sg

Finding performance issues in DBMSs—also referred to as opti-
mization opportunities or performance bugs—is challenging. Given
a query Q and a database D, we want to determine whether exe-
cuting Q on D results in suboptimal performance. In general, no
ground truth is available that specifies whether Q executes within
a reasonable time. To exacerbate this issue, DBMSs use various
heuristics and cost models during optimizations, or make trade-offs
in optimizing specific kinds of queries over others. Second, the
execution time of Q might be significant if D is large, making it
time-consuming to measure Q’s actual performance. Given that the
execution time depends on various factors of the execution envi-
ronment [35] (e.g., the state of caches), it might even be necessary
to execute Q multiple times to obtain a reasonably reliable measure
of its execution time. Cloud environments are in particular prone to
noise [27]; a report on testing SAP HANA [2] has recently stressed
that performance testing for cloud offerings of DBMSs—such as SAP
HANA Cloud, which runs in Kubernetes pods—is one of the main
challenges in testing DBMSs due to inherently noisy environments.

Benchmark suites such as TPC-DS [52] or TPC-H [53] are widely
used in practice to monitor DBMSs’ performance over versions.
However, they can be used only to detect regression bugs on a
specific set of benchmarks. While predetermined performance
baselines or thresholds could be specified [41, 64, 65], deriving
an appropriate baseline is challenging and might result in false
alarms. Automated testing techniques have been proposed to find
performance issues without the need of curating a benchmark suite.
APOLLO [24] generates databases and queries automatically and
identifies performance regression issues by validating whether ex-
ecuting the query on different versions of the DBMS results in
significantly different execution times. Since APOLLO can find
only regression issues, AMOEBA [34] was proposed, which can

16

| Problem: How to Identify Performance Issues?

SELECT * FROM t@ LEFT JOIN t1 ON t©.cO=t1.cO WHERE t0.c0==1;

m Query
3 seconds

My

{l1]2]} Is it an unexpected
bad performance?

Results

17

Challenge: No Ground Truth

« No ground truth (test oracle) of a
reasonable execution time

* Cannot be expected to achieve optimal
efficiency as they make various tradeoffs
to balance optimization time and
execution time

0.1s—1s?
1s—5s?
55s—-20s ?

OptimizationJ Runtime

timg/

Existing Solution: Differential Testing

« APOLLOM
* Selecting an old and new version of a DBMS enables finding only

regression bugs m
My 5@3 3s
SELECT * FROM t@ Version n

WHERE c0=0; m ~ 7
My {5 25s
Version n-1 @

[1] Jung, J., Hu, H., Arulraj, J., Kim, T., & Kang, W. Apollo: Automatic detection and diagnosis of performance regressions in database systems. VLDB Endowment, 13(1), 57-70.

19

| Existing Solution: Equivalent Queries

* AMOEBA!!

» Generating equivalent queries (or programs) might result in many
false alarms as only 6/39 reported issues are confirmed.

SELECT Max(emp.sal)FROM dept INNER JOIN emp @ 75mS
ON ename NOT LIKE nameWHERE [name ='ACCT';] \
SELECT Max(emp.sal)FROM dept INNER JOIN emp ON / y {ﬁs

O 238ms

ename NOT LIKE nameWHERE' name ="ACCT'IS TRUE ;|
[1] Liu, X., Zhou, Q., Arulraj, J., & Orso, A. (2022, May). Automatic detection of performance bugs in database systems using equivalent queries. In Proceedings of the 44th
International Conference on Software Engineering (pp. 225-236).

20

What Affects Performance?

SELECT * FROM to
LEFT JOIN t1 ON
t0.co= WHERE
t0.co==1;

)

Parse &
Optimize

SQL Optimization:
Inefficient query plans
incur performance issues

@ C Filterl(rc,w:z)) OO 0 t1

s), * = [
(SCAN t0(ow=2)) (SCAN t1ow-1)) 1
ORI
C F|Iter(rc,W)) C F|Iter(row y)

(SCAN tO(mW 5)) (SCAN tl(mw 1) % Database

Simplified Query Plans

21

What Constitute SQL Optimization?

Cost score

Cardinality

estimation &

(1) Filter(ow=2) (2) 101N)| (3) @ L.
| |

(SCAN to(row 2)) (SCAN 1:]-(row 1) SCAN tO(rowzz)

Plan space
enumeration

Cardinality estimation is the most important part of query optimization(]

. . . _— . 22
[1] Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., & Neumann, T. (2015). How good are query optimizers, really?. Proceedings of the VLDB Endowment, 9(3), 204-215.

ldea

Cardinality Estimation Restriction Testing
(CERT) focuses on the most relevant SQL
optimization component and eschews
executing queries

Cardinality Estimation Restriction Testing (CERT)

(1) Query Generation Query Plan o
« cross join (left outer) Validati ng
| estimated row:20
EXPLAIN SELECT * —| | pred: (c0<1)OR(c0>1) Cardinality Estimation
FROM tO LEFT JOIN t1 |-- scan Query Plan
ON t0.c0 <1 OR t0.c0> 1; | estimated row:13 * cross join
| table: t0@1t0_pkey | estimated row:60
| spans: FULLSCAN |- filter .
|--* scan | | estimated row:12 Estimated «
(2) Query Restriction estimated row:5 | | filter: (c0<1)OR(c0>1) row:20
table: t1@t1_pkey | |--* scan
EXPLAIN SELECT * spans: FULL SCAN | estimated row:13
FROM t0 INNER JOIN t1 | table: tO@t0_pkey Estimated .
ON t0.c0 < 1 OR 0.c0 > 1; | | opanss FULLSCAN row:60 K
estimated row:5
table: t1@t1_pkey
spans: FULL SCAN

Cardinality Restriction Monotonicity Property: a given query should
not fetch fewer rows than a more restrictive query derived from it.

| How to restrict queries?

SELECT

[ALL | DISTINCT]

select expression [,

select expression ...]

FROM table_reference [INNER | LEFT
| RIGHT | FULL | CROSS JOIN
table reference ...]*
[WHERE where condition]
[GROUP BY column_expression
[HAVING where_condition]]
[LIMIT row_count];

* We propose 12 rules covering
the common clauses of a query.

25

| How to restrict queries?

SELECT

[ALL | DISTINCT]

select expression [,

select expression ...]
SELECTALL DISTINCT*FROM1t0; FROM table reference [INNER | LEFT

| RIGHT | FULL | CROSS JOIN

table reference ...]*

[WHERE where condition]

[GROUP BY column_expression

[HAVING where_condition]]

[LIMIT row_count];

26

| How to restrict queries?

Table 1 SELECT
gy Table2 [ALL | DISTINCT]
2 A .
3 B select expression [,
AC select _expression ...]
4 ;\ _ FROM table_reference [INNER | LEFT
1 1 B | RIGHT | FULL | CROSS JOIN
2 an L2 pA r2arAr 2 wan 2 s table reference ...]*
R e e B2 B [WHERE where_condition]
oA [GROUP BY column_expression
3¢ [HAVING where_condition]]

INNER LEFT RIGHT FULL CROSS .
oINS o on S N S JoN [LIMIT row_count];

90

| How to restrict queries?

SELECT
[ALL | DISTINCT]

SELECT * FROM t0 WHERE c0>0: select_expression [,

select expression ...]

FROM table_reference [INNER | LEFT
SELECT * FROM t0 WHERE c0>0 | RIGHT | FULL | CROSS JOIN
c0!=8: table reference ...]*

[WHERE where condition]

[GROUP BY column_expression
SELECT * FROM t0 WHERE c0>0 OR [HAVING wher\e_condition]]

€0!=8; [LIMIT row_count];

91

| How to restrict queries?

SELECT

[ALL | DISTINCT]

select expression [,

select expression ...]

FROM table_reference [INNER | LEFT
| RIGHT | FULL | CROSS JOIN
table reference ...]*
[WHERE where condition]
[GROUP BY column_expression
[HAVING where_condition]]
[LIMIT row_count];

SELECT * FROM t0 GROUP BY c0;

92

| How to restrict queries?

SELECT
[ALL | DISTINCT]
select expression [,

select expression ...]
SELECT * EROM t0 GROUP BY c0 FROM table_reference [INNER | LEFT
HAVING c0>0: | RIGHT | FULL | CROSS JOIN

table reference ...]*

[WHERE where condition]
[GROUP BY column_expression
[HAVING where_condition]]
[LIMIT row_count];

93

| How to restrict queries?

SELECT

[ALL | DISTINCT]

select expression [,

select expression ...]
SELECT * FROM tO LIMIT 40 5: FROM table_reference [INNER | LEFT

| RIGHT | FULL | CROSS JOIN

table reference ...]*

[WHERE where condition]

[GROUP BY column_expression

[HAVING where_condition]]

[LIMIT row_count];

* These rules are not exhaustive, and we just propose several promising rules to cover common SQL clauses. 94

|How to Avoid False Positive?

EXPLAIN SELECT * FROM t© FULL JOIN t1 ON tl1.cl IN (tl.cl) WHERE CASE WHEN tl.rowid > 2 THEN false
ELSE tl1.cl=1 END; -- estimated rows: 2
EXPLAIN SELECT * FROM t© RIGHT JOIN t1 ON tl1.cl IN (tl.cl) WHERE CASE WHEN tl.rowid > 2 THEN false
ELSE tl1.cl1l=1 END; -- estimated rows: 3

filter * cross join(right)
| estimated row:2 estimated row:3

|
|-° cross join(full) | -7 scan (t0)
| estimated row:6 | estimated row:2
|-° scan (t1) |-° filter
| estimated row:4 | estimated row:1
|-* scan (te) |-* scan (t1)
estimated row:2 estimated row:4

The two query plans are significantly different, so developers
consider their query plans incomparable

69

|Comparable Query Plans

EXPLAIN SELECT * FROM t© FULL JOIN t1 ON tl1.cl IN (tl.cl) WHERE CASE WHEN tl.rowid > 2 THEN false
ELSE tl1.cl=1 END; -- estimated rows: 2
EXPLAIN SELECT * FROM t© RIGHT JOIN t1 ON tl1.cl IN (tl.cl) WHERE CASE WHEN tl.rowid > 2 THEN false
ELSE tl1.cl1l=1 END; -- estimated rows: 3

filter * cross join(right)
| estimated row:2 | estimated row:3
|-° cross join(full) | -7 scan (t0)
| estimated row:6 | estimated row:2
|-° scan (t1) |-° filter
| estimated row:4 | estimated row:1
|-* scan (te) |-* scan (t1)
estimated row:2 estimated row:4

Two query plans are comparable only when the edit distance of

the two query plans’ operation sequences is no more than one
70

Checking Structural Similarity

(1) Query Generation

Query Plan

EXPLAIN SELECT *
FROM tO LEFT JOIN t1

ON t0.cO0<1 ORt0.cO>1;

(2) Query Restriction

EXPLAIN SELECT *
FROM tO INNER JOIN t1

ON t0.cO0<1 OR1t0.c0O>1;

e cross join (left outer)
| estimated row:20

| pred: (c0O<1)OR(c0>1)
|--* scan

| estimated row:13

| table: t0O@t0_pkey
| spans: FULL SCAN
|--e scan

estimated row:5
table: t1@t1_pkey
spans: FULL SCAN

Query Plan

® cross join
| estimated row:60
|--o filter
| | estimated row:12
| filter: (c0<1)OR(c0>1)
|--* scan
estimated row:13

table: t0@t0_pkey

|
|
|
|
| spans: FULL SCAN
|

v

--e scan
estimated row:5
table: t1@t1_pkey
spans: FULL SCAN

@ Gttt

CardiHSTHEP R n

® Cross]OI

|.——- scan
Estimated e
row:20 |--e silter

|m|——- scan

Estimated e
row:60 -3

| Evaluation: Issues Found

DBMS Version Rules Modifications to the query Status

1 MySQL 8.0.31 9 ... WHERE 10.c0 > t0.cl ... Verified

2 MySQL 8.0.31 9 ... WHERE tl.cl BETWEEN (SELECT | WHERE FALSE) AND (t1.c0) ... Verified

3 MySQL 8.0.31 6 ... DISTINCT ... Verified

4 TiDB 516684 11 ...WHERE (TRUE) OR{FO-BASE64(t0-¢0)) ... Confirmed
5 TiDB 3ef8352a 7 ... GROUP BY 10.c0 ... Confirmed
6 TiDB 3ef8352a 3,5 .. EEFT JOIN... Confirmed
7 TiDB 3ef8352a 8 ... HAVING (t1.cO)OREGEXP(NULL) ... Confirmed
8 TiDB 6¢55faf0 2 . RIGHF INNER JOIN... Confirmed
9 TiDB 6¢55faf0 9 ... WHERE v0.c2 ... Confirmed
10 CockroachDB 7cde315d 1 ... EEFF INNER JOIN.. Fixed
11 CockroachDB f188d21d 11 ...WHERE (10.c0 IS NOT NULL) ©i Fixed (Known)
12 CockroachDB 8158662 8 ... HAVING (tl1.cO ::CHAR) ="a’ ... Backlogged
13 CockroachDB fbfb71b9 2 .. RIGHF INNER JOIN... Backlogged

We reported 13 unique performance issues, in which 11 were confirmed or fixed.

27

| Evaluation: Performance Analysis

CREATE TABLE t© (c@ INT);

CREATE TABLE t1 (c@ INT);

CREATE TABLE t2 (c@ INT);

INSERT INTO t© SELECT * FROM generate series(1,1000);
INSERT INTO t1 SELECT * FROM generate series(1001,2000);
INSERT INTO t2 SELECT * FROM generate series(1,333100);

ISSUE 88455: SELECT COUNT(*) FROM t@ LEFT OUTER JOIN t1 ON t@.ce<1
OR t0.c0>1 FULL JOIN t2 ON t0.cO=t2.c0; -- 399ms -> 321ms

ISSUE 89161: SELECT COUNT(*) FROM t@ LEFT JOIN t1 ON t0.c0>0 WHERE
(t0.cO IS NOT NULL) OR (1 < ALL(t@.cO, t0.c0)); -- 13Ims -> 109ms

The fixes improves query performance by 19% for CockroachDB on average.

28

Bug Analysis

SELECT COUNT(*) FROM t@ LEFT OUTER JOIN tl1 ON t0.c0<1 OR t0.co>1

FULL JOIN t2 ON t0.co=t2.co;

® group (scalar)
| estimated row count: 1

The hash join[loads into '— hash join (full outer)
| estimated row count: 335,603

memory the second child’s — o scan
data. which is expected | estimated row count: 333,100
?

] | table: t2@t2_pkey
smaller than second child. L— e cross join (left outer)

| estimated row count: 333,000
F— e scan
| estimated row count: 1,000
| table: tO@t0_pkey
L— e scan
estimated row count: 1,000
table: t1@t1_pkey

[1] Website, CockroachDB Hash Join, https://www.cockroachlabs.com/docs/stable/joins.html#hash-joins
[2] Website, CockroachDB Issue 88455, https://github.com/cockroachdb/cockroach/issues/88455

[2]

e group (scalar)
| estimated row count: 1
L— e hash join (full outer)
| estimated row count: 1,006,808
— e cross join (left outer)
| | estimated row count: 999,001
F— e scan
| estimated row count: 1,000
| table: tO@t0_pkey
L— e scan
| estimated row count: 1,000
| table: t1@t1_pkey
Lo scan
estimated row count: 333,100
table: t2@t2_pkey

29

Query Plan
Guidance (QPG

Testing Database Engines

Jinsheng Ba
National University of Singapore

Abstract—Database systems are widely used to store and query
data. Test oracles have been proposed to find logic bugs in such
systems, that is, bugs that cause the database system to compute
an incorrect result. To realize a fully automated testing approach,
such test oracles are paired with a test case generation technique;
a test case refers to a database state and a query on which
the test oracle can be applied. In this work, we propose the
concept of Query Plan Guidance (QPG) for guiding automated
testing towards “interesting” test cases. SQL and other query
languages are declarative. Thus, to execute a query, the database
system translates every operator in the source language to one
of potentially many so-called physical operators that can be
executed; the tree of physical operators is referred to as the query
plan. Our intuition is that by steering testing towards exploring
diverse query plans, we also explore more interesting behaviors—
some of which are potentially incorrect. To this end, we propose
a mutation technique that gradually applies promising mutations
to the database state, causing the DBMS to create diverse query
plans for subsequent queries. We applied our method to three
mature, widely-used, and extensively-tested database systems—
SQLite, TiDB, and CockroachDB—and found 53 unique, previ-
ously unknown bugs. Our method exercises 4.85-408.48 x more
unique query plans than a naive random generation method and
7.46x more than a code coverage guidance method. Since most
datab y including commercial ones—expose query
plans to the user, we consider QPG a generally applicable, black-
box approach and believe that the core idea could also be applied
in other contexts (e.g., to measure the quality of a test suite).

Index Terms—automated testing, test case generation

via Query Plan Guidance

Manuel Rigger
National University of Singapore

DBMS to increase the chance of finding bugs in them. No clear
definition or metric on what an interesting test case constitutes
exists, as it is unknown in advance by which logic bugs a
DBMS is affected. Second, the test cases should be valid
both syntactically and semantically while also corresponding
to the structure imposed by the test oracle; for example, the
NoREC oracle requires a query with a weERe clause, but no
more complex clauses (e.g., HAVING clauses) [7] while also
forbidding various functions and keywords from being used
(e.g., aggregate functions).

Both generation-based and mutation-based approaches have
been proposed to be paired with the above test oracles [6]-
[8]. SQLancer uses a generation-based approach in which test
cases are generated adhering to the grammar of the respective
SQL dialects as well as the constraints imposed by the test
oracles. Overall, this approach makes it likely to generate
valid test cases; we observed that about 90% of the queries
generated by SQLancer for SQLite are valid. However, the test
case generation approach receives no guidance that could steer
it towards producing interesting test cases. Recently, SQL-
Right [9] was proposed to address this shortcoming. SQLRight
mutates test cases aiming to maximize the DBMS’ covered
code, thus building on the success of grey-box fuzzing [10],
[11]. While SQLRight improved on SQLancer’s test case
generation in various metrics, code coverage alone was shown

30

Problem: How To Generate Test Cases?

* How do we generate diverse test cases to test DBMSs?

| 68 - o
Atestcase 4 Query ﬂ
S Execute Oracle

-

Database

31

| Previous Test Case Generation Methods

; ;target_elem E

* Generation-based methods. o {(seecr)

* Restricted to the grammar and hard to
generate diverse test cases.

DISTINCT

SELECT c© FROM to;

SELECT cO, c1+5 FROM t0; FROM —qmble ref Il]
H._._(SYSTmHTIMEH a_expr I—J, ‘

SELECT c@, c1+5 FROM tO, t1;

* Examples: SQLSmith!2], (were
SQLa ncer[S] 1—(HA\!ING)—' a_expr I—J 1—(WINDOW]—| window_definition_list I-J A

" . The SQL grammar!! for CockroachDB.
[1] Website, " CockroachDB SELECT Clause", https://www.cockroachlabs.com/docs/stable/select-clause.html

[2] Website, "SQLSmith", https://github.com/ansel/sqlsmith 32
[3] Website, "SQLancer", https://github.com/sglancer/sqlancer

https://www.cockroachlabs.com/docs/stable/select-clause.html
https://github.com/anse1/sqlsmith
https://github.com/sqlancer/sqlancer

Previous Test Case Generation Methods

e Mutation-based methods (Coverage-guided Grey-box fuzzing).
* Insufficient proportion of valid test cases. (SQLRight(!: 40%)

100% code coverage does
not cover 100% execution
logic, such as database states
are not accounted for.

* Code coverage is insufficient to explore DBMSs’ bugs.

SELECT * FROM t@;

SEL?CT * FROM to; O
O
SEL?CT * FROM tOEOFEOF; SQLite uses testcase() macros as described in the previous

subsection to make sure that every condition in a bit-vector
decision takes on every possible outcome. In this way, SQLite
also achieves 100% MC/DC in addition to 100% branch coverage.

* Example: SQLRight sQLite Documents!2.,

[1] Liang, Y., Liu, S., & Hu, H. (2022). Detecting Logical Bugs of {DBMS} with Coverage-based Guidance. In 31st USENIX Security Symposium (USENIX Security 22) (pp. 4309-4326).
[2] Website, "How SQLite Is Tested", https://www.sqlite.org/testing.html#mcdc 33

https://www.sqlite.org/testing.html#mcdc

ldea

Query Plan Guidance (QPG) steers the
test case generation process towards
exploring diverse query plans

| Query Plan Guidance

SELECT * FROM t@ LEFT JOIN t1
WHERE t1.c0==0;

Query A

Query B

Query C

[--SCAN to
"--SCAN t1 LEFT-JOIN
“--Filter

[--Filter
[--SCAN t

[--SCAN to
“--USE TEMP B-TREE FOR ORDER BY

[--Filter
[--SCAN te
“--SCAN t1 LEFT-JOIN

{2]0}

35

Step 1 & 2: Query Generation and Validation

Database States
tl t2 t3

Reuse the existing w[a|lo
database and query Sk

ull
generation approaches R e —

0

c
1

Query Generation and Validation

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0
LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

Step 3: Query Plan Collection

Record newly seen
qguery plans

Database States

t1

t2

t3

c0

cl

=

c0

null

1

—

Database 3

l

Query Generation and Validation

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

SELECT * FROM t2 RIGHT JOIN t3 ON d<®4—?

EXPLAIN QUERY PLAN
SELECT ...

@ Query Plan Collection

Query Plan Pool

—) SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

Step 4: Database State Mutation

Database States CREATE INDEX i0 ON t2 (c0) WHERE c0
t1 t2 t3 <
Mutate the database w|ct||] <0 @Database StateIMutation
state if no query plan ™

has been Observed for E Database 3 054,€l€’§€1r€/v 4/4[}?5

. 748
a certain number of l fsA/h %8

Iiterations Query Generation and Validation @

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0
LEFT JOIN t1 ON c=3 WHERE t1.a<>0;
EXPLAIN QUERY PLAN

SELECT ...
@ Query Plan Collection

Query Plan Pool

—) SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

Step 4: Database State Mutation

* Challenge: CREATE INDEX i0 ON t2 (cO) WHERE c0
How to apply promising mutations that likely |
result in queries triggering new query plans? @Database State Mutation
e Solution: o o
model as a multi-armed bandit probl e rlereane, MLy,
proobiem 57:4 fp'? &, ?5
e "Ony

Query Plan Guidance (QPG)

New query plans are
able to be observed,

Database States

CREATE INDEX i0 ON t2 (cO) WHERE c0

and new bugs may be E Database 3 4’54,515,4’54, 44/40?<°

found

tl t2 (i) t3 <« |
0 al[o] @ Database State Mutation
null
5‘15'9%%5*
.A)
Query Generation and Validation @

Restart

LEFT JOIN t1 ON c=3 WHERE t1.a<>0

SELECT * FROM t2 RIGHT JOIN t3 ON d<®<—?

EXPLAIN QUERY PLAN
SELECT ...

@ Query Plan Collection

Query Plan Pool
SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

(2) By Richard Hipp (drh) on 2022-07-15 12:59:59 in reply to 1 [link] [source]

This bug goes back almost 8 years to check-in ddb5f0558c445699 on 2016-09-07, ve

Evaluation: New Bugs

Several bugs had
been hidden for
more than six years!

&

DBMS Logic Crash Error All
SQLite 23 0 5 28
TiDB 3 2 4 9
CockroachDB 2 3 11 16
Sum: 28 5 20 53

With the help of QPG, we found 53 unique, previously unknown bugs.

40

Evaluation: Covering unique query plans

Time (in hours)

SQlLancer ---- SQLancer+QPG SQLRight
The average number of unigue query plans across 10 runs in 24 hours.

QPG exercises 4.85-408.48x more unique query plans than a
naive random generation method (SQLancer) and 7.46x more
than a code-coverage guidance method (SQLRight).

81

Differential Query
Plans (DQP)

Keep It Simple: Testing Databases via Differential Query Plans

JINSHENG BA, National University of Singapore, Singapore
MANUEL RIGGER, National University of Singapore, Singapore

Query optimizers perform various optimizations, many of which have been proposed to optimize joins. It is
pivotal that these optimizations are correct, meaning that they should be extensively tested. Besides manually
written tests, automated testing approaches have gained broad adoption. Such approaches semi-randomly
generate databases and queries. More importantly, they provide a so-called test oracle that can deduce whether
the system’s result is correct. Recently, researchers have proposed a novel testing approach called Transformed
Query Synthesis (TQS) specifically designed to find logic bugs in join optimizations. TQOS is a sophisticated
approach that splits a given input table into several sub-tables and validates the results of the queries that
join these sub-tables by retrieving the given table. We studied TQS’s bug reports, and found that 14 of 15
unique bugs were reported by showing discrepancies in executing the same query with different query plans.
Therefore, in this work, we propose a simple alternative approach to TQS. Our approach enforces different
query plans for the same query and validates that the results are consistent. We refer to this approach as
Differential Query Plan (DQP) testing. DQP can reproduce 14 of the 15 unique bugs found by TQS, and found 26
previously unknown and unique bugs. These results demonstrate that a simple approach with limited novelty
can be as effective as a complex, conceptually appealing approach. Additionally, DQP is complementary to
other testing approaches for finding logic bugs. 81% of the logic bugs found by DQP cannot be found by NoREC
and TLP, whereas DQP overlooked 86% of the bugs found by NoREC and TLP. We hope that the practicality of
our approach—we implemented in less than 100 lines of code per system—will lead to its wide adoption.

CCS Concepts: » Information systems — Query optimization; « Security and privacy — Database and
storage security.

Additional Key Words and Phrases: Join, logic bug

ACM Reference Format:
Jinsheng Ba and Manuel Rigger. 2024. Keep It Simple: Testing Databases via Differential Query Plans. Proc.
ACM Manag. Data 2, 3 (SIGMOD), Article 188 (June 2024), 26 pages. https://doi.org/10.1145/3654991

41

| Transformed Query Synthesis (TQS)

TQS* is the state-of-the-art approach to realize a test oracle.

(a) Wide Table Ty,

RowlD|orderld| goodsld goodsNamel userld | userMName | price H
0 0001 1111 book str I 15 Valldate CorrECtneSS
1 0001 1112 food stri 5 .
2 [o002 | 1111 book | strl null| 15 according to Tw
3 0003 1111 book str2 Peter 15 >
4 |oo003 | 1112 food str2 Peter 5 Result
5 0003 1113 flower str2 Peter 10 4
6 0004 |1111—=noise| book—null str3 Bob 15—null
7 0004 112 food str3 Bob 5
8 null null null naise Tom Tull
9 null 1111 hook null null 15

(b) Schema Tables

RowlD orderll—abi;—(;sld EE RD;"’I‘DStr:‘s—?:‘ﬂss LIEeTrurHln?me foe T —> T1JoinT2 Join T3

0 [oo01 | 111 str1 1 str2 Poter
1 o001 | 1112 | sl |2 str3 Boh QU er
S |' 2 0002 1111 str1 | RowlD|goodsld goodsName| Table T3 y
p |t 3 | 0003 | 1111 str2 0| 11 book
4 | 0003 1112 str2 1 112 food
5 0003 [1113 [tz L2 | 1913 | flower
6 | 0004 [1111—noisg| strd | RowlDiaoodsName price |Table T4
7 o004 | 1112 str3 D book 15
1 food 5
Noise Injection 2 flower 10

42
* Xiu Tang, Sai Wu, Dongxiang Zhang, Feifei Li, and Gang Chen. 2023. Detecting Logic Bugs of Join Optimizations in DBMS. Proc. ACM Manag. Data 1, 1, Article 55.

| TQS Study

We observed that

1) TQS claimed 100+ found bugs, but we only found 21 bug
reports and

2) most bugs were reported in a different manner as TQS.

SELECT t0©.cO FROM t© WHERE t0.c@ IN (SELECT t0.c® FROM t® WHERE (t0.co
NOT IN (SELECT t©.c® FROM t® WHERE t0.c0)) = (t0.c0));

SELECT t0.c© FROM t@ WHERE t0.c©® IN (SELECT t0.co

FROM t© WHERE (t©.c0 NOT IN (SELECT t©.c@ FROM t@ WHERE t0.co)) =
(t0.c9));

*https://bugs.mysqgl.com/bug.php?id=106713

43

Differential Query Plans (DQP)

@ Database State Generation

user transaction

user_id | |transaction_id| amount
1 1 c12934 100000
2 1_e3b664 -10

i
A

~_~

@ Query Generation

SELECT

IFNULL(SUM(amount), 0) AS balance
FROM user JOIN transaction

ON transaction.transaction_id =

Query Plan

nested_loop

+- table

| table_name: user

| access_type: index

+- table

| table_name: transaction
| access_type: all

@ Result Validation

user.user_id, D,

@ Query Plan Enforcement

SELECT

/*+ JOIN_ORDER(transaction, user)*/
IFNULL(SUM(amount), 0) as balance
FROM user JOIN transaction

ON transaction.transaction_id =
user.user_id;

A 4

- balance
99990.00
Query Plan "-."' @ J
nested_loop {
+- table : >
| table_name: transaction : @
| access_type: all I
+- table !
| table_name: user
| access_type: eq_ref balance

0.00

Evaluation

* 14 of 15 unique bugs found by
TQS can be reproduced by our
method DQP.

Query Plan

DBMS Bug Unique Join
MySQL 106713 v v
MySQL 106715 v v v
MySQL 106716 v v v
MySQL 106717 v v
MySQL 106718 v v
MySQL 106611 v
MySQL 106710 v v
MysQL 99273 v
MySQL 109211 v N v
MySQL 109212 v v v
MariaDB 28214 v v v
MariaDB 28215 v v v
MariaDB 28216 v v v
MariaDB 28217 v v v
MariaDB 29695 v v v
TiDB 33039 N v
TiDB 33041 N v
TiDB 33042 v N v
TiDB 33045 N v
TiDB 33046 N v

| Evaluation

* DQP additionally found 26
previously unknown and
unique bugs.

DBMS Bug Status Severity Logic Join
MySQL 112243 Confirmed Non-critical v v
MySQL 112242 Confirmed Serious v
MySQL 112264 Confirmed Serious v v
MySQL 112269 Confirmed Serious v v
MySQL 112296 Confirmed Non-critical v v
MariaDB 32076 Confirmed Major v
MariaDB 32105 Confirmed Major v ve
MariaDB 32106 Confirmed Major v v
MariaDB 32107 Confirmed Major v ve
MariaDB 32108 Confirmed Major v v
MariaDB 32143 Confirmed Major v ve
MariaDB 32186 Confirmed Major v Ve
TiDB 46535 Confirmed Major v ve
TiDB 46538 Confirmed Moderate

TiDB 46556 Confirmed Major

TiDB 46580 Fixed Critical v v
TiDB 46598 Confirmed Major v

TiDB 46599 Confirmed Major v

TiDB 46601 Fixed Critical v

TiDB 47019 Confirmed Major v

TiDB 47020 Confirmed Major v v
TiDB 47286 Confirmed Major v ve
TiDB 47345 Conlfirmed Critical v v
TiDB 47346 Confirmed Major

TiDB 47347 Confirmed Major

TiDB 47348 Confirmed Moderate

Sum: 26 21 15

46

Unified Query Plan

Representation
Uplan

Towards a Unified Query Plan Representation

Jinsheng Ba
National University of Singapore

Abstract—In database systems, a query plan is a series of
concrete internal steps to execute a query. Multiple testing
approaches utilize query plans for finding bugs. However, query
plans are repr d in a datab specific so imple-
menting these testing approaches requires a non-trivial effort,
hindering their adoption. We envision that a unified query
plan representation can facilitate the implementation of these
approaches. In this paper, we present an exploratory case study
to investigate query plan representations in nine widely-used
database systems. Our study shows that query plan repre-
sentations consist of three conceptual components: operations,
properties, and formats, which enable us to design a unified
query plan representation. Based on it, existing testing methods
can be efficiently adopted, finding 17 previously unknown and
unique bugs. Additionally, the unified query plan representation
can facilitate other applications. Existing visualization tools can
support multiple database systems based on the unified query
plan representation with moderate implementation effort, and
comparing unified query plans across database systems provides
actionable insights to improve their performance. We expect that
the unified query plan representation will enable the exploration
of additional application scenarios.

Index Terms—Case Study, Database, Query Plan, Unified
Representation

Manuel Rigger
National University of Singapore

of TiDB [10], but corresponds to a property of another step
to scan tables in the query plans of PostgreSQL [11]. We
refer to the different ways in which serialized query plans are
represented as query plan representations. Considering that
hundreds of DBMSs exist,' implementing the above testing
methods requires significant effort as they need to account
for differences in query plan representations, thus significantly
hindering the effectiveness of the above approaches.

We envision that a unified query plan representation would
remove the roadblock to implementing the above testing
approaches. In this work, we systematically study query plan
representations. We present an exploratory case study [12],
which is a method to investigate a phenomenon in depth,
including both qualitative and quantitative research methods.
We collected documents, source code, and third-party appli-
cations of the query plans in nine popular DBMSs across five
different data models, and summarized the commonalities and
differences of query plan representations. Our study shows
that query plan representations are based on three conceptual
components: operations, properties, and formats. Based on the

47

Unified Query Plan Representation

(Uplan)

* We define plan as a tree that
can have plan-associated
properties. i

D =

(98]

10
11

12
13
14
15
16
17

Listing 2. The unified query plan representation in EBNE.

plan (tree)7? properties

tree ::= node| (' —children—>' '{' tree (',’ tree)x
T)?

node ::= operation properties

operation|::= ‘Operation’ ":’ operation_category ’'-—>'
operation_identifier

properties| ::= (property (’,’ property)*)?

property ::= property_category ’'->' property_identifier
’:' walue

operation category ::= "Producer’ | ‘Bag’ | "Join”" |
"Folder’ | '"Executor’ | ’'Projector’ | 'Consumer’

property_category ::= 'Cardinality’ | ’Cost’ |
"Configuration’ | ’Status’

operation_identifier ::= keyword

property identifier ::= keyword

keyword ::= letter (letter | digit | ’_")=«

value ::= string | number | boolean | ’‘null’

string ::= '"’ (letter | digit)=« '™/

number = '='7? digit+

boolean ::= 'true’ | 'false’

letter ::= [a-zA-7%]

diagit = 10-91

48

Application:

QPG

CERT

esting

A

MySQL

|

Parserl

PostgreSQL

|

Parser2

TiDB

|

Parser3

'J'

Parser4

* We can easily extend
QPG and CERT to
support more DBMSs
reusing the same
query plan parser.

Application:

QPG CERT

esting

m

MySQL PostgreSQL

TiDB

public static String

parseQueryPlan(String queryPlan);

* We can easily extend
QPG and CERT to
support more DBMSs
reusing the same
query plan parser.

PREVIOUSLY UNKNOWN AND UNIQUE BUGS FOUND WITH UPlan.

DBMS QPG CERT Al
MySQL 6 1 7
PostgreSQL 0 1 1
TiDB 7 2 9

Sum: 17

UPlan enables large-scale adoption for testing methods
QPG and CERT in a DBMS-agnostic implementation way.

Application: Visualization

PostgreSQL

MongoDs
* We implemented a visualization —weemem i oo
tool for serialized query plans by
modifying PEV2, a customized |
guery plan visualization tool for —T
PostgreSQL, to use Uplan. B o
“dim

Parallel Producer->Full [§ -
Table Scan

Producer->Full Table Scan

https://unifiedqueryplan.github.io/pev2.html

Existing DBMS-specific visualization tools could support more DBMSs if they
supported our unified query plan representation.

84

https://unifiedqueryplan.github.io/pev2.html

Application: Benchmarking

SELECT ... FROM PARTSUPP, SUPPLIER, NATION WHERE ...
HAVING ... > (SELECT ... FROM PARTSUPP, SUPPLIER,
NATION WHERE ...) ...;

* Uplan enables comparing

PostgreSQL: TiDB:
query pla ns across DBMSs. Bag->Sort Projector->Project
Folder->Aggregate Bag->Sort

* A potential efficiency issue that

PostgreSQL requires six table
scanning operations, while
TiDB only requires four table
scanning operations for the
same query.

Comparing the unified query plan
representation provides actionable
insights.

Join->Hash Join
Producer->Full Table
name object: partsupp
Executor->Hash Row

Join—->Hash
Producer—->Full Table
name object: supplier
Executor->Hash Row

Producer->Full Table
name object: nation
Folder->Aggregate

Join->Hash Join
Producer->Full Table
name object: partsupp
Executor->Hash Row

Join->Hash Join
Producer->Full Table
name object: supplier
Executor->Hash Row

Producer->Full Table
name object: nation

Folder->Aggregate Hash
Projector->Project

Join->Index Hash
Join->Tndex Hash
Executor->Collect
Producer->Full Table
name object: nation
Executor->Collect Order
Producer->Index-only}..
name object: supplier
Executor->Collect Order
Producer->Index-only. /.
name object: partsupp
Producer->1d Scan
name object: partsupp

Review: Our Methods

 Challenges:
1) Test oracle

 2) Test case generation

SELECT * FROM
t0 LEFT JOIN t1

WHERE 0. <015 I I
WHERE t@.ce=1; .-~ [!:umffcawnil:gj [F(umS(f:ao?\,E)l]
eeneenanenne

3) Generate diverse test cases

HashlJoin

(num of row=1)

Materialize
(num of row=1)

Ii 4) Unified plan fl

- o'
‘‘‘‘‘
-
.....

1) Identify performance issues

2) Identify logic bugs

51

Impact

Niiars Dlan

SL,H T~ Mar 7 INID as AN AR Mmvriin Cacbmnr cmmmremim@marbeanshlabe cmme o irada
.

G Hel ‘ Pavel Klinov @klinovp - Oct 12

Cool stuff! Cardinality estimation in many systems starts well-founded at

| he

,;(% Thuan Pham @thuanpv_ - Jun 2
The . : 5
o) Jordan Lewis @largedatabank - Dec 9, 2022 " DB!

131 unique and previously unknown bugs found,
and 12 CVEs assigned. ;

1c/2206 NN255

Figure 19 (d), (e) and (f) show the execution results on MySQL. Since NoREC does not support MySQL, we only [~
compared the other tools. It can be observed that TLP and QPG are quite exceptional, as they quickly detected bugs
in MySQL. They discovered 12 bugs in just 40 minutes, after which the system crashed (crash detected), leading to

automated testing towards unseen query plans for finding logic bugs.
T We found over 50 unique, previously unknown bugs. Stay tuned for the
preprint!

[1] Gao, X., Liu, Z., Cui, J., Li, H., Zhang, H., Wei, K., & Zhao, K. (2023). A Comprehensive Survey on Database Management System Fuzzing: Techniques, Taxonomy and Experimental 5
Comparison. arXiv preprint arXiv:2311.06728.

Research Scope and Limitations

 Target bugs
 Logic bugs: Incorrect results.
» Performance issues: Unexpected slowdown.

* Query plans
* The proposed methods require target DBMSs expose query plans.
» Top-10 DBMSs* support exposing query plans.

« Advancing automated testing technique

* The proposed methods can efficiently find bugs, but cannot
demonstrate the absence of bugs.

*https://db-engines.com/en/ranking/relational+dbms

Discussion: Bug-finding

* The methods we covered
« Metamorphic testing
« Differential testing

* The methods we did not cover
* Fuzzing
 Test suites and benchmarking
* Verification

echnigues

|Fuzzing

Squirrel!]

SELECT * FROM t@;

SELPCT * FROM t0; Memory
- corrupt?
SEL?CT * FROM t@EOFEOF;

Generating Test Cases Validating

Fuzzing can only find memory-related bugs.
We aim to efficiently find logic bugs and performance issues.

[1] Zhong, Rui, et al. "Squirrel: Testing database management systems with language validity and coverage feedback." Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security. 2020.

55

est Suites and Benchmarking

Test case

do_execsgl_test joins-14e2@ {
SELECT * FROM y@ RIGHT JOIN y1 ON trus INNER JOIN y2 ON true WHERE y2.c!=99 AND y2.c!=08;

13
14
2

2 i — Expected result

1
2
3
4
6
7

@

Performance benchmark TPC-H[2!
T

o . [1] 1,000 GB Results
SQLite test suite I

Eml.nl HPE DL325 Gen10 6,145,628 50.40 USD NR 08/26/19 EXASOL 6.2 CentOS 7.6 07/31719
nterprise

Hewlets HPE DL325 Gen10 3,635,443 57.91 USD NR 08/26/19 EXASOL 6.2 Cent0S 7.6 07/31/19
nterprise

= HPE ProLiant Microsoft SQL Server 2022 Microsoft Windows Server 2022

Homrorsenckard DL385 Gen11 1,186,627 J 265.00 USD NR 12105221 Enterprise Edition 64 bit Datacenter Edition o322

We aim t tomaticall
e al O au O a Ica y ML Dell PowerEdge 979335 | 26923 UsD NR 05/03/21 | Microsoft SQL Server 2019 Red Hat Enterprise Linux 8 05/03/21

Technologies R7515 Enterprise Edition 64 bit

Microsoft SQL Server 2019

M.L PowerEdge MX740¢ 824603 | 459.50 USD NR 03/03/21 ! Red Hat Enterprise Linux 8 03/03/21
ol | Server Enterprise Edition

o || S e 743,750 | 339.21USD NR EramA || LS SRl SERE AN Red Hat Enterprise Linux 8 08/05/19
. . Enterorse DL325 Gen10 . Enterprise Edition
for finding bugs. "
[1] Website, "SQLite Test Suite", https://github.com/salite/sglite/tree/5Scc4ab93/test 56

[2] Website, "TPC-H", https://www.tpc.org/tpch/

https://github.com/sqlite/sqlite/tree/5cc4ab93/test
https://www.tpc.org/tpch/

Verification

Verified DBMSIY, Verified T-SQL!2!

Mathematical
abstraction

r

Specification Check correctness

Test cases

Verification can prove the target program is theoretical bug-free, but suffer
from scalability problem.
We aim to efficiently find bugs in practice.

[1] Malecha, Gregory, et al. "Toward a verified relational database management system." POPL 2010. 57
[2] Diana, Rodrigo, et al. "A symbolic model checking appproach to verifying transact-SQL." SMC 2012.

Future Work

* How to simulate real-world database workload?

* Query plans approximate queries and data distribution.
* The table has an index -> IndexScan in the query plan
* The table does not have an index -> FullScan in the query plan

* How to verify DBMSs in a practical way?
* Query plans are suitable abstractions of DBMSs with limited states.

[HashJoin]

| Leftchild] < [Right child |

* How to detect bugs in various DBMSs?

| Future Work: Beyond Query Plans

* Understand and utilize intermediate representations in testing
‘Frameworles T O & e @ |

Gomputatil:rnal Graph |

C -w= C Frontend X86 Backend - XB6 '
\ /‘ Section 3 High Level Graph Rewriting

Y
Optimized Computational Graph

Common / o
Fortran ==| Fortran Frontend Optimizer PowerPC Backend | —» PowerPC Operator-level Optimization and Code Generation
Secti 4 Declarative Hardware-Aware
ection Tensor Exprassigns Optimization Primitives

f rF
/ \‘ . Machine Learmning Based
ARM Backend == ARM Section 5 Automated Optimizer

Ada = | Ada Frontend

Optimized Low Level Loop Frogram

P . Y i i .
Accolerator Backend || LLWMIR || CUDAMetaliOpencL |

Compiler: LLVM .
[Deployable Module |

Al system: TVM

59

Publications During PhD Study

1) Jinsheng Ba, Manuel Rigger. (2024). Finding Performance Issues in Database Engines via Cardinality
Estimation Testing. In Proceedings of International Conference on Software Engineering (ICSE).

2) Jinsheng Ba, Manuel Rigger. (2024). Keep It Simple: Testing Databases via Differential Query Plans. In
Proceeding of ACM Management of Data (SIGMOD)

3) Jinsheng Ba, Manuel Rigger. (2023). Testing Database Engines via Query Plan Guidance. In
Proceedings of International Conference on Software Engineering (ICSE) .. Distinguished Paper Award

4) Jinsheng Ba, Manuel Rigger. (2024). Towards a Unified Query Plan Representation. (In submission).

5) Jinsheng Ba, Gregory J Duck, and Abhik Roychoudhury. (2022). Efficient Greybox Fuzzing to Detect
Memory Errors. In The 37th IEEE/ACM International Conference on Automated Software Engineering
(ASE) & Distinguished Paper Award

6) Jinsheng Ba, Marcel Bohme, Zahra Mirzamomen, and Abhik Roychoudhury. (2022). Stateful Greybox
Fuzzing. In 31st USENIX Security Symposium (SEC)

Conclusion

| Cardinality Estimation Restriction Testing (CERT)

| Database Management Systems (DBMSs) | Thesis Statement

Validating
y Estinarl

[

Estimated 3 o
row:20

Estimated -
row:60 9 W

EXPLANSELECT * |

FROM 10 LEFTIOIN 11
ON10.0< 1 ORT0.C0> 1.

{|1]} Incorrect result

By
“:

"’5 Unexpected slowdown
@ auen Restricson
EELANSEECT *

SELECT * FROM t0; —»] ‘* - c . - .
— E oo Efficient and effective testing of database engines o onermoms
can be achieved by utilizing the internal execution
SQL Query DBMS Result information provided by query plans.
Cardinality Restriction Monotonicity Property: a given query should
[not fetch fewer rows than a more restrictive query derived from it.]

[Problem: How to efficiently and effectively find bugs in DBMSs?]

| Differential Query Plans (DQP) I(Uunrl)ler:i) Query Plan Representation

+ We define plan as a tree that |
can have plan-associated —
properties.

| Query Plan Guidance (QPG)

CREATE INDEX © ON £ (c0) WHERE <0

7\Database States
O% X}

O S
New query plans are [=]=] @ 3) Dutabase State Mutatio
able to be observed, L) - %q,lglk' Y
and new bugs may be
seme T g

@ cueryGeneration

SEECT
FNULL{SUM(amount), 0) AS balance

(@ Resuk validation

FROM user SO ansac
found 1 .
(2) Query Genertion and valdation L@ [se38) [tansacton_ja] _amount |
/ARLECT * FROM K2 RIGHT 1IN 13 ON) dpmeeeet.. II, 100000 e
) Do e o | e

(@) aueryp

s
[T ——
EXPLAIN QUERY PLAN Q
\ SELECT . —
& on

Restart

L.
Query plans, as a readily available source of information,
can make testing more efficient and effective.

.

	Default Section
	Slide 1: Testing Database Engines via Query Plans
	Slide 2: Thesis Committee
	Slide 3: Database Management Systems (DBMSs)
	Slide 4: Database Management Systems (DBMSs)

	Database Management Systems (DBMSs)
	Slide 5: Database Management Systems (DBMSs)
	Slide 6: Core Challenges For Automatic Testing
	Slide 7: State-of-the-art Research

	Thesis Statement
	Slide 8: Thesis Statement
	Slide 9: What is a Query Plan?
	Slide 10: What is a Query Plan?
	Slide 11: Query Plan Representations
	Slide 12: Studied Target DBMSs
	Slide 13: Query Plan Study
	Slide 14: Operations and Properties
	Slide 15: Research Overview
	Slide 16: Cardinality Estimation Restriction Testing (CERT)
	Slide 17: Problem: How to Identify Performance Issues?
	Slide 18: Challenge: No Ground Truth
	Slide 19: Existing Solution: Differential Testing
	Slide 20: Existing Solution: Equivalent Queries
	Slide 21: What Affects Performance?
	Slide 22: What Constitute SQL Optimization?
	Slide 23: Idea

	Cardinality Estimation Restriction Testing (CERT)
	Slide 24: Cardinality Estimation Restriction Testing (CERT)
	Slide 25: How to restrict queries?
	Slide 26: How to restrict queries?
	Slide 27: Evaluation: Issues Found
	Slide 28: Evaluation: Performance Analysis
	Slide 29: Bug Analysis

	Differential Query Plans (DQP)
	Slide 30: Query Plan Guidance (QPG)
	Slide 31: Problem: How To Generate Test Cases?
	Slide 32: Previous Test Case Generation Methods
	Slide 33: Previous Test Case Generation Methods
	Slide 34: Idea
	Slide 35: Query Plan Guidance
	Slide 36: Step 1 & 2: Query Generation and Validation
	Slide 37: Step 3: Query Plan Collection
	Slide 38: Step 4: Database State Mutation

	Query Plan Guidance (QPG)
	Slide 39: Query Plan Guidance (QPG)
	Slide 40: Evaluation: New Bugs
	Slide 41: Differential Query Plans (DQP)
	Slide 42: Transformed Query Synthesis (TQS)
	Slide 43: TQS Study

	Differential Query Plans (DQP)
	Slide 44: Differential Query Plans (DQP)
	Slide 45: Evaluation
	Slide 46: Evaluation
	Slide 47: Unified Query Plan Representation (Uplan)

	Unified Query Plan Representation (Uplan)
	Slide 48: Unified Query Plan Representation (Uplan)
	Slide 49: Application: Testing
	Slide 50: Application: Testing
	Slide 51: Review: Our Methods
	Slide 52: Impact
	Slide 53: Research Scope and Limitations
	Slide 54: Discussion: Bug-finding Techniques
	Slide 55: Fuzzing
	Slide 56: Test Suites and Benchmarking
	Slide 57: Verification
	Slide 58: Future Work
	Slide 59: Future Work: Beyond Query Plans
	Slide 60: Publications During PhD Study
	Slide 61: Conclusion
	Slide 62: WARNING: BACKUP SLIDES
	Slide 63: Overview
	Slide 64: Query Plan Study
	Slide 65: Testing: Differential Testing
	Slide 66: Testing: Metamorphic Testing
	Slide 67
	Slide 68: DBMSs’ Reliability is Critical
	Slide 69: How to Avoid False Positive?
	Slide 70: Comparable Query Plans
	Slide 71: Checking Structural Similarity
	Slide 72: Evaluation: Accuracy
	Slide 73: Step 4: Database State Mutation
	Slide 74: Query Plan Enforcement
	Slide 75: Query Plan Enforcement
	Slide 76: Evaluation: Efficiency
	Slide 77: Evaluation: New Bugs
	Slide 78: Discussion: Other Performance Issues
	Slide 79: What is a Query Plan?
	Slide 80
	Slide 81: Evaluation: Covering unique query plans
	Slide 82: Goal
	Slide 83: Query Plan Applications
	Slide 84: Application: Visualization
	Slide 85: Application: Benchmarking
	Slide 86: Research Overview
	Slide 87: Artifact
	Slide 88: Existing Solution: Benchmarking
	Slide 89: Challenge 2: Long-wait and Unstable Execution time
	Slide 90: How to restrict queries?
	Slide 91: How to restrict queries?
	Slide 92: How to restrict queries?
	Slide 93: How to restrict queries?
	Slide 94: How to restrict queries?
	Slide 95: Formats
	Slide 96: Goal

