
© Copyright National University of Singapore. All Rights Reserved.
© Copyright National University of Singapore. All Rights Reserved.

Testing Database Engines
via Query Plans

Jinsheng Ba

National University of Singapore

Database Management Systems (DBMSs)

3

Systems that store, process,
manipulate, and query data.

The global DBMSs market has
grown to $163.93 billion in
2023 at a high compound
annual growth rate of 15.4%*.

* https://www.researchandmarkets.com/reports/5735140/database-software-global-market-report#product--related-products.
Figure: https://medium.com/@sewwandithilakarathna2000/dbms-database-management-system-bc2d86bdba2

Database Management Systems (DBMSs)

4

SELECT * FROM t0;

SQL Query DBMS Result

t0

c0 c0

2 0

t1

{|2|}

Database Management Systems (DBMSs)

5

SELECT * FROM t0;

SQL Query

Problem: How to efficiently and effectively find bugs in DBMSs?

t0

c0 c0

2 0

t1

{|1|}

ResultDBMS

Incorrect result

Unexpected slowdown

Crash

Core Challenges For Automatic Testing

6

• Test oracle (bug identification)
• Logic bugs: How to know the result is incorrect?

• Performance issues: How to know an execution time is unexpected?

• Test case generation
• How to automatically explore huge states of target systems?

{ 0 } 1s? 5s?

Validating
Results

Generating
Test Cases

Restricted test cases.

State-of-the-art Research

7

Fuzzing for crash bugs
Zhong et al. Squirrel (CCS’20)
Liang et al. LEGO (ICDE’23)
Jiang et al. DynSQL (SEC’23)
Fu et al. Sedar (ICSE’24)

Cannot find logic bugs
and performance issues.

Differential/Metamorphic testing for logic bugs
Slutz RAGS (VLDB’98)
Rigger et al. SQLancer (OSDI’20, ESEC/FSE’20, OOPSLA’20)
Song et al. DQE (ICSE’23)

Cannot generate diverse test cases.

Differential/Metamorphic testing for performance bugs
Liu et al. AMOEBA (ICSE’22)
Jung et al. APOLLO (VLDB’22)

Find regression bugs only or has a high false alarm rate.

Grammar-based Test Cases
Generation
Seltenreich et al. (SQLSmith)
Fu et al. Griffin (ASE’22)
Liang et al. SQLRight (SEC’23)

Reference engineering for logic bugs
Tang et al. TQS (SIGMOD’23)

Not intuitive to understand.

DBMS internal states
are not considered.

Thesis Statement

8

Efficient and effective testing of database engines
can be achieved by utilizing the internal execution

information provided by query plans.

What is a Query Plan?

9

• A query plan is a tree of operations that specifies how a SQL statement is
executed by a specific DBMS.

SELECT * FROM t0 LEFT JOIN t1
ON t0.c0=t1.c0 WHERE t0.c0=1;

HashJoin
└─TableFullScan
└─Materialize

└─TableFullScan

{1|1}

SQL Query Plan Result

EXPLAIN

t0
c0
1
2
3
4
5
6
7
8
9
10

Textual Query Plan (Simplified)

t1
c0
1

What is a Query Plan?

10

• A query plan is a tree of operations that describes how a SQL statement is
executed by a specific DBMS.

• DBMSs typically expose query plans to users for tuning the performance
of queries.

CREATE INDEX i0 ON t0(c0);

SELECT * FROM t0 LEFT JOIN t1
ON t0.c0=t1.c0 WHERE t0.c0=1;

Query Plan Representations

11

Query plans are represented in DBMS-specific ways, and we empirically studied them*.

TiDB

CockroachDB

SQLite

DuckDB

* Jinsheng Ba & Manuel Rigger. (2024). Towards a Unified Query Plan Representation.

Studied Target DBMSs

12

• The studied nine popular DBMSs ranging from various data models,
development modes, and release dates.

DBMS Version Data Model Release Rank

InfluxDB 2.7.0 Time-series 2013 28

MongoDB 6.0.5 Document 2009 5

MySQL 8.0.32 Relational 1995 2

Neo4j 5.6.0 Graph 2007 22

PostgreSQL 14.7 Relational 1989 4

SQL Server 16.0.4015.1 Relational 1989 3

SQLite 3.41.2 Relational 1990 10

SparkSQL 3.3.2 Relational 2014 37

TiDB 6.5.1 Relational 2016 84

Query Plan Study

13

• Query plan
representations share
three conceptual
components

Operations: concrete
executed steps

Properties:
Operation-related info

Formats: JSON, XML,
TEXT

Operations and Properties

14

• According to function signatures
and semantic, we classified
operations into seven categories
and properties into four categories.

Producer

Cardinality

Executor

Join

Query plan representations are commonly supported and share common

components, so we can develop general testing approaches.

Research Overview

15

1) Test oracle: identifying performance issues: Jinsheng Ba & Manuel Rigger. (2024). Finding Performance Issues in Database
Engines via Cardinality Estimation Testing. In Proceedings of International Conference on Software Engineering (ICSE).

2) Test oracle: identifying logic bugs in a simple way: Jinsheng Ba & Manuel Rigger. (2024). Keep It Simple: Testing Databases
via Differential Query Plans. In Proceeding of ACM Management of Data (SIGMOD)

3) Test case generation: generating diverse test cases: Jinsheng Ba & Manuel Rigger. (2023). Testing Database Engines via
Query Plan Guidance. In Proceedings of International Conference on Software Engineering (ICSE).

4) Building general applications on query plans: Jinsheng Ba & Manuel Rigger. (2024). Towards a Unified Query Plan
Representation. (Under submission).

1) Identify performance issues

2) Identify logic bugs3) Generate diverse test cases 4) Unified plan

SELECT * FROM
t0 LEFT JOIN t1
ON t0.c0=t1.c0
WHERE t0.c0=1;

{1|1}

Cardinality Estimation
Restriction Testing
(CERT)

16

Problem: How to Identify Performance Issues?

17

3 seconds

Results

Is it an unexpected
bad performance?

{|1|2|}

Query

SELECT * FROM t0 LEFT JOIN t1 ON t0.c0=t1.c0 WHERE t0.c0==1;

Challenge: No Ground Truth

• No ground truth (test oracle) of a
reasonable execution time

• Cannot be expected to achieve optimal
efficiency as they make various tradeoffs
to balance optimization time and
execution time

18

Optimization
time

Runtime

0.1s – 1s ?
1s – 5s ?
5s – 20s ?

Existing Solution: Differential Testing

[1] Jung, J., Hu, H., Arulraj, J., Kim, T., & Kang, W. Apollo: Automatic detection and diagnosis of performance regressions in database systems. VLDB Endowment, 13(1), 57-70.

• APOLLO[1]

• Selecting an old and new version of a DBMS enables finding only
regression bugs

SELECT * FROM t0
WHERE c0=0;

3 s

2.5 s

≈ ?
Version n

Version n-1

19

Existing Solution: Equivalent Queries

• AMOEBA[1]

• Generating equivalent queries (or programs) might result in many
false alarms as only 6/39 reported issues are confirmed.

20

SELECT Max(emp.sal)FROM dept INNER JOIN emp
ON ename NOT LIKE nameWHERE name ='ACCT';

[1] Liu, X., Zhou, Q., Arulraj, J., & Orso, A. (2022, May). Automatic detection of performance bugs in database systems using equivalent queries. In Proceedings of the 44th
International Conference on Software Engineering (pp. 225-236).

SELECT Max(emp.sal)FROM dept INNER JOIN emp ON
ename NOT LIKE nameWHERE name ='ACCT'IS TRUE;

75ms

238ms

≈ ?

What Affects Performance?

21

Parse &
Optimize

JOIN(row=2)

Filter(row=2)

SCAN t0(row=2) SCAN t1(row=1)

Filter(row=1)

JOIN(row=2)

Filter(row=2)

SCAN t0(row=2) SCAN t1(row=1)

1

2

c0

t0 t1

1
1
2

c0
1

Database

SQL Optimization:
Inefficient query plans

incur performance issues

Simplified Query Plans

SELECT * FROM t0
LEFT JOIN t1 ON
t0.c0=t1.c0 WHERE
t0.c0==1;

What Constitute SQL Optimization?

22
[1] Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., & Neumann, T. (2015). How good are query optimizers, really?. Proceedings of the VLDB Endowment, 9(3), 204-215.

Cardinality estimation is the most important part of query optimization[1]

3 4 ……

Plan space
enumeration

Cardinality
estimation

Cost score
Cost model

Idea

23

Cardinality Estimation Restriction Testing
(CERT) focuses on the most relevant SQL

optimization component and eschews
executing queries

Cardinality Estimation Restriction Testing (CERT)

EXPLAIN SELECT *
FROM t0 LEFT JOIN t1

ON t0.c0 < 1 OR t0.c0 > 1;

1 Query Generation

24

 cross join (left outer)
| estimated row:20
| pred: (c0<1)OR(c0>1)
 -- scan
| estimated row:13
| table: t0@t0_pkey
| spans: FULL SCAN
 -- scan
 estimated row:5
 table: t1@t1_pkey
 spans: FULL SCAN

Query Plan

 cross join
| estimated row:60
 -- filter
| | estimated row:12
| | filter: (c0<1)OR(c0>1)
 -- scan
| estimated row:13
| table: t0@t0_pkey
| spans: FULL SCAN
 -- scan
 estimated row:5
 table: t1@t1_pkey
 spans: FULL SCAN

Query Plan

EXPLAIN SELECT *
FROM t0 INNER JOIN t1

ON t0.c0 < 1 OR t0.c0 > 1;

2 Query Restriction

4
 Validating
Cardinality Estimation

<

Estimated
row:20

Estimated
row:60

Cardinality Restriction Monotonicity Property: a given query should
not fetch fewer rows than a more restrictive query derived from it.

How to restrict queries?

25

• We propose 12 rules covering
the common clauses of a query.

SELECT
[ALL | DISTINCT]
select_expression [,
select_expression ...]
FROM table_reference [INNER | LEFT
| RIGHT | FULL | CROSS JOIN
table_reference ...]*
[WHERE where_condition]
[GROUP BY column_expression
[HAVING where_condition]]
[LIMIT row_count];

How to restrict queries?

26

SELECT
[ALL | DISTINCT]
select_expression [,
select_expression ...]
FROM table_reference [INNER | LEFT
| RIGHT | FULL | CROSS JOIN
table_reference ...]*
[WHERE where_condition]
[GROUP BY column_expression
[HAVING where_condition]]
[LIMIT row_count];

SELECT ALL DISTINCT * FROM t0;

How to restrict queries?

90

INNER
JOIN

LEFT
JOIN

RIGHT
JOIN

FULL
JOIN

CROSS
JOIN

1
2
3

A
B
C

Table 1
Table 2

A
B

2
3

1
2
3

A
B

A
B
C

2
3

1
2
3

A
B
C

1
1
1

A
B
C
A
B
C
A
B
C

2
2
2
3
3
3

SELECT
[ALL | DISTINCT]
select_expression [,
select_expression ...]
FROM table_reference [INNER | LEFT
| RIGHT | FULL | CROSS JOIN
table_reference ...]*
[WHERE where_condition]
[GROUP BY column_expression
[HAVING where_condition]]
[LIMIT row_count];

How to restrict queries?

91

SELECT
[ALL | DISTINCT]
select_expression [,
select_expression ...]
FROM table_reference [INNER | LEFT
| RIGHT | FULL | CROSS JOIN
table_reference ...]*
[WHERE where_condition]
[GROUP BY column_expression
[HAVING where_condition]]
[LIMIT row_count];

SELECT * FROM t0 WHERE c0>0;

SELECT * FROM t0 WHERE c0>0 AND

c0!=8;

SELECT * FROM t0 WHERE c0>0 OR

c0!=8;

How to restrict queries?

92

SELECT
[ALL | DISTINCT]
select_expression [,
select_expression ...]
FROM table_reference [INNER | LEFT
| RIGHT | FULL | CROSS JOIN
table_reference ...]*
[WHERE where_condition]
[GROUP BY column_expression
[HAVING where_condition]]
[LIMIT row_count];

SELECT * FROM t0 GROUP BY c0;

How to restrict queries?

93

SELECT
[ALL | DISTINCT]
select_expression [,
select_expression ...]
FROM table_reference [INNER | LEFT
| RIGHT | FULL | CROSS JOIN
table_reference ...]*
[WHERE where_condition]
[GROUP BY column_expression
[HAVING where_condition]]
[LIMIT row_count];

SELECT * FROM t0 GROUP BY c0

HAVING c0>0;

How to restrict queries?

94

SELECT
[ALL | DISTINCT]
select_expression [,
select_expression ...]
FROM table_reference [INNER | LEFT
| RIGHT | FULL | CROSS JOIN
table_reference ...]*
[WHERE where_condition]
[GROUP BY column_expression
[HAVING where_condition]]
[LIMIT row_count];

SELECT * FROM t0 LIMIT 10 5;

* These rules are not exhaustive, and we just propose several promising rules to cover common SQL clauses.

How to Avoid False Positive?

69

EXPLAIN SELECT * FROM t0 FULL JOIN t1 ON t1.c1 IN (t1.c1) WHERE CASE WHEN t1.rowid > 2 THEN false
ELSE t1.c1=1 END; -- estimated rows: 2
EXPLAIN SELECT * FROM t0 RIGHT JOIN t1 ON t1.c1 IN (t1.c1) WHERE CASE WHEN t1.rowid > 2 THEN false
ELSE t1.c1=1 END; -- estimated rows: 3

` filter ` cross join(right)
| estimated row:2 | estimated row:3
|-` cross join(full) |-` scan (t0)
 | estimated row:6 | estimated row:2
 |-` scan (t1) |-` filter
 | estimated row:4 | estimated row:1
 |-` scan (t0) |-` scan (t1)
 estimated row:2 estimated row:4

The two query plans are significantly different, so developers
consider their query plans incomparable

Comparable Query Plans

70

EXPLAIN SELECT * FROM t0 FULL JOIN t1 ON t1.c1 IN (t1.c1) WHERE CASE WHEN t1.rowid > 2 THEN false
ELSE t1.c1=1 END; -- estimated rows: 2
EXPLAIN SELECT * FROM t0 RIGHT JOIN t1 ON t1.c1 IN (t1.c1) WHERE CASE WHEN t1.rowid > 2 THEN false
ELSE t1.c1=1 END; -- estimated rows: 3

` filter ` cross join(right)
| estimated row:2 | estimated row:3
|-` cross join(full) |-` scan (t0)
 | estimated row:6 | estimated row:2
 |-` scan (t1) |-` filter
 | estimated row:4 | estimated row:1
 |-` scan (t0) |-` scan (t1)
 estimated row:2 estimated row:4

Two query plans are comparable only when the edit distance of
the two query plans’ operation sequences is no more than one

Checking Structural Similarity

EXPLAIN SELECT *
FROM t0 LEFT JOIN t1

ON t0.c0 < 1 OR t0.c0 > 1;

1 Query Generation

71

 cross join (left outer)
| estimated row:20
| pred: (c0<1)OR(c0>1)
 -- scan
| estimated row:13
| table: t0@t0_pkey
| spans: FULL SCAN
 -- scan
 estimated row:5
 table: t1@t1_pkey
 spans: FULL SCAN

Query Plan

 cross join
| estimated row:60
 -- filter
| | estimated row:12
| | filter: (c0<1)OR(c0>1)
 -- scan
| estimated row:13
| table: t0@t0_pkey
| spans: FULL SCAN
 -- scan
 estimated row:5
 table: t1@t1_pkey
 spans: FULL SCAN

Query Plan

EXPLAIN SELECT *
FROM t0 INNER JOIN t1

ON t0.c0 < 1 OR t0.c0 > 1;

2 Query Restriction

 cross join
 ...
 -- scan
 ...
 -- scan
 ...

 cross join
 ...
 -- filter
 ...
 -- scan
 ...
 -- scan
 ...

 Checking
Structural Similarity

34
 Validating
Cardinality Estimation

<

Estimated
row:20

Estimated
row:60

Evaluation: Issues Found

27

We reported 13 unique performance issues, in which 11 were confirmed or fixed.

Evaluation: Performance Analysis

28

CREATE TABLE t0 (c0 INT);
CREATE TABLE t1 (c0 INT);
CREATE TABLE t2 (c0 INT);
INSERT INTO t0 SELECT * FROM generate_series(1,1000);
INSERT INTO t1 SELECT * FROM generate_series(1001,2000);
INSERT INTO t2 SELECT * FROM generate_series(1,333100);

ISSUE 88455: SELECT COUNT(*) FROM t0 LEFT OUTER JOIN t1 ON t0.c0<1
OR t0.c0>1 FULL JOIN t2 ON t0.c0=t2.c0; -- 399ms -> 321ms
ISSUE 89161: SELECT COUNT(*) FROM t0 LEFT JOIN t1 ON t0.c0>0 WHERE
(t0.c0 IS NOT NULL) OR (1 < ALL(t0.c0, t0.c0)); -- 131ms -> 109ms

The fixes improves query performance by 19% for CockroachDB on average.

Bug Analysis

29

SELECT COUNT(*) FROM t0 LEFT OUTER JOIN t1 ON t0.c0<1 OR t0.c0>1
FULL JOIN t2 ON t0.c0=t2.c0; -- 399ms -> 321ms[2]

• group (scalar)
 │ estimated row count: 1
 └── • hash join (full outer)
 │ estimated row count: 335,603
 ├── • scan
 │ estimated row count: 333,100
 │ table: t2@t2_pkey
 └── • cross join (left outer)
 │ estimated row count: 333,000
 ├── • scan
 │ estimated row count: 1,000
 │ table: t0@t0_pkey
 └── • scan
 estimated row count: 1,000
 table: t1@t1_pkey

• group (scalar)
 │ estimated row count: 1
 └── • hash join (full outer)
 │ estimated row count: 1,006,808
 ├── • cross join (left outer)
 │ │ estimated row count: 999,001
 │ ├── • scan
 │ │ estimated row count: 1,000
 │ │ table: t0@t0_pkey
 │ └── • scan
 │ estimated row count: 1,000
 │ table: t1@t1_pkey
 └── • scan
 estimated row count: 333,100
 table: t2@t2_pkey

The hash join[1] loads into
memory the second child’s
data, which is expected
smaller than second child.

[1] Website, CockroachDB Hash Join, https://www.cockroachlabs.com/docs/stable/joins.html#hash-joins
[2] Website, CockroachDB Issue 88455, https://github.com/cockroachdb/cockroach/issues/88455

Query Plan
Guidance (QPG)

30

• How do we generate diverse test cases to test DBMSs?

31

Oracle

A test case

Database

Query

Execute

Problem: How To Generate Test Cases?

Previous Test Case Generation Methods

32

• Generation-based methods.

• Examples: SQLSmith[2],
SQLancer[3]

[1] Website, "CockroachDB SELECT Clause", https://www.cockroachlabs.com/docs/stable/select-clause.html
[2] Website, "SQLSmith", https://github.com/anse1/sqlsmith
[3] Website, "SQLancer", https://github.com/sqlancer/sqlancer

• Restricted to the grammar and hard to
generate diverse test cases.

The SQL grammar[1] for CockroachDB.

SELECT c0 FROM t0;

SELECT c0, c1+5 FROM t0;

SELECT c0, c1+5 FROM t0, t1;

https://www.cockroachlabs.com/docs/stable/select-clause.html
https://github.com/anse1/sqlsmith
https://github.com/sqlancer/sqlancer

• Mutation-based methods (Coverage-guided Grey-box fuzzing).

Previous Test Case Generation Methods

33
[1] Liang, Y., Liu, S., & Hu, H. (2022). Detecting Logical Bugs of {DBMS} with Coverage-based Guidance. In 31st USENIX Security Symposium (USENIX Security 22) (pp. 4309-4326).
[2] Website, "How SQLite Is Tested", https://www.sqlite.org/testing.html#mcdc

SQLite Documents[2].

• Insufficient proportion of valid test cases. (SQLRight[1]: 40%)

• Code coverage is insufficient to explore DBMSs’ bugs.

• Example: SQLRight

100% code coverage does
not cover 100% execution

logic, such as database states
are not accounted for.

SELECT * FROM t0;

SEL?CT * FROM t0;

SEL?CT * FROM t0EOFEOF;

https://www.sqlite.org/testing.html#mcdc

Idea

34

Query Plan Guidance (QPG) steers the
test case generation process towards

exploring diverse query plans

Query Plan Guidance

35

SELECT * FROM t0 LEFT JOIN t1
WHERE t1.c0==0;

|--Filter
|--SCAN t0
`--SCAN t1 LEFT-JOIN

|--SCAN t0
`--SCAN t1 LEFT-JOIN

`--Filter

{2|0}

|--Filter
|--SCAN t

|--SCAN t0
`--USE TEMP B-TREE FOR ORDER BY

Query A

Query B

Query C

… …

Step 1 & 2: Query Generation and Validation

36

Reuse the existing
database and query
generation approaches Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation

Step 3: Query Plan Collection

37

Record newly seen
query plans

EXPLAIN QUERY PLAN
SELECT ...

Query Plan Collection

SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

Query Plan Pool

3

Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation

Step 4: Database State Mutation

38

Mutate the database
state if no query plan
has been observed for
a certain number of
iterations

EXPLAIN QUERY PLAN
SELECT ...

Query Plan Collection

SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

Query Plan Pool

3

CREATE INDEX i0 ON t2 (c0) WHERE c0

1 2 3 k…

4 Database State Mutation

Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation

Step 4: Database State Mutation

73

CREATE INDEX i0 ON t2 (c0) WHERE c0

1 2 3 k…

4 Database State Mutation

• Challenge:
How to apply promising mutations that likely
result in queries triggering new query plans?

• Solution:
model as a multi-armed bandit problem

Query Plan Guidance (QPG)

39

New query plans are
able to be observed,
and new bugs may be
found

EXPLAIN QUERY PLAN
SELECT ...

Query Plan Collection

SCAN t; SCAN t; SCAN t; RIGHT-JOIN t; SCAN t;

Query Plan Pool

3

CREATE INDEX i0 ON t2 (c0) WHERE c0

1 2 3 k…

4 Database State Mutation

Database

1 t1 t2 t3

c0 c1

2 null

c0

1

c0

Database States

SCAN t USING COVERING INDEX i; SCAN t; SCAN t;
RIGHT-JOIN t; SCAN t;

i0

SELECT * FROM t2 RIGHT JOIN t3 ON d<>0

LEFT JOIN t1 ON c=3 WHERE t1.a<>0;

2 Query Generation and Validation

Restart

Evaluation: New Bugs

40

DBMS Logic Crash Error All
SQLite 23 0 5 28
TiDB 3 2 4 9
CockroachDB 2 3 11 16
Sum: 28 5 20 53

With the help of QPG, we found 53 unique, previously unknown bugs.

Several bugs had
been hidden for

more than six years!

Evaluation: Covering unique query plans

81

The average number of unique query plans across 10 runs in 24 hours.

QPG exercises 4.85–408.48× more unique query plans than a

naive random generation method (SQLancer) and 7.46× more

than a code-coverage guidance method (SQLRight).

Differential Query
Plans (DQP)

41

Transformed Query Synthesis (TQS)

42

Split

T1 Join T2 Join T3

Query

Result

Validate correctness
according to Tw

TQS* is the state-of-the-art approach to realize a test oracle.

* Xiu Tang, Sai Wu, Dongxiang Zhang, Feifei Li, and Gang Chen. 2023. Detecting Logic Bugs of Join Optimizations in DBMS. Proc. ACM Manag. Data 1, 1, Article 55.

TQS Study

We observed that

1) TQS claimed 100+ found bugs, but we only found 21 bug
reports and

2) most bugs were reported in a different manner as TQS.

43

*https://bugs.mysql.com/bug.php?id=106713

SELECT t0.c0 FROM t0 WHERE t0.c0 IN (SELECT t0.c0 FROM t0 WHERE (t0.c0
NOT IN (SELECT t0.c0 FROM t0 WHERE t0.c0)) = (t0.c0)); --
{0000001985} ,{0000001996}
SELECT t0.c0 FROM t0 WHERE t0.c0 IN (SELECT /*+ no_semijoin()*/ t0.c0
FROM t0 WHERE (t0.c0 NOT IN (SELECT t0.c0 FROM t0 WHERE t0.c0)) =
(t0.c0)); -- empty set

Differential Query Plans (DQP)

44

Database

user

user_id

1

2

transaction

amount

100000

-10

transaction_id

1_c12934

1_e3b664

i0

1 Database State Generation

 SELECT
IFNULL(SUM(amount), 0) AS balance
FROM user JOIN transaction
ON transaction.transaction_id =
user.user_id;

nested_loop
+- table
| table_name: user
| access_type: index
+- table
| table_name: transaction
| access_type: all

Query Plan

2 Query Generation

 SELECT
/*+ JOIN_ORDER(transaction, user)*/
IFNULL(SUM(amount), 0) as balance
FROM user JOIN transaction
ON transaction.transaction_id =
user.user_id;

nested_loop
+- table
| table_name: transaction
| access_type: all
+- table
| table_name: user
| access_type: eq_ref

Query Plan3 Query Plan Enforcement

balance

0.00

=

balance

99990.00

4 Result Validation

Evaluation

45

• 14 of 15 unique bugs found by
TQS can be reproduced by our
method DQP.

DBMS Bug Unique Join Query Plan

MySQL 106713 ✓ ✓

MySQL 106715 ✓ ✓ ✓

MySQL 106716 ✓ ✓ ✓

MySQL 106717 ✓ ✓

MySQL 106718 ✓ ✓

MySQL 106611 ✓

MySQL 106710 ✓ ✓

MySQL 99273 ✓

MySQL 109211 ✓ ✓ ✓

MySQL 109212 ✓ ✓ ✓

MariaDB 28214 ✓ ✓ ✓

MariaDB 28215 ✓ ✓ ✓

MariaDB 28216 ✓ ✓ ✓

MariaDB 28217 ✓ ✓ ✓

MariaDB 29695 ✓ ✓ ✓

TiDB 33039 ✓ ✓

TiDB 33041 ✓ ✓

TiDB 33042 ✓ ✓ ✓

TiDB 33045 ✓ ✓

TiDB 33046 ✓ ✓

Evaluation

46

• DQP additionally found 26
previously unknown and
unique bugs.

Unified Query Plan
Representation
(Uplan)

47

Unified Query Plan Representation
(Uplan)

48

• We define plan as a tree that
can have plan-associated
properties.

Application: Testing

49

• We can easily extend
QPG and CERT to
support more DBMSs
reusing the same
query plan parser.MySQL PostgreSQL TiDB

QPG CERT

…

Parser1 Parser2 Parser3 Parser4

Application: Testing

50

• We can easily extend
QPG and CERT to
support more DBMSs
reusing the same
query plan parser.MySQL PostgreSQL TiDB

QPG CERT

…

public static String
parseQueryPlan(String queryPlan);

UPlan enables large-scale adoption for testing methods
QPG and CERT in a DBMS-agnostic implementation way.

Application: Visualization

84

Existing DBMS-specific visualization tools could support more DBMSs if they
supported our unified query plan representation.

https://unifiedqueryplan.github.io/pev2.html

• We implemented a visualization
tool for serialized query plans by
modifying PEV2, a customized
query plan visualization tool for
PostgreSQL, to use Uplan.

https://unifiedqueryplan.github.io/pev2.html

Application: Benchmarking

85

• Uplan enables comparing
query plans across DBMSs.

• A potential efficiency issue that
PostgreSQL requires six table
scanning operations, while
TiDB only requires four table
scanning operations for the
same query.

Comparing the unified query plan
representation provides actionable
insights.

Review: Our Methods

51

• Challenges:
• 1) Test oracle

• 2) Test case generation

1) Identify performance issues

2) Identify logic bugs3) Generate diverse test cases 4) Unified plan

SELECT * FROM
t0 LEFT JOIN t1
ON t0.c0=t1.c0
WHERE t0.c0=1;

{1|1}

Impact

52[1] Gao, X., Liu, Z., Cui, J., Li, H., Zhang, H., Wei, K., & Zhao, K. (2023). A Comprehensive Survey on Database Management System Fuzzing: Techniques, Taxonomy and Experimental
Comparison. arXiv preprint arXiv:2311.06728.

131 unique and previously unknown bugs found,
and 12 CVEs assigned.

Research Scope and Limitations

53

• Target bugs
• Logic bugs: Incorrect results.

• Performance issues: Unexpected slowdown.

• Query plans
• The proposed methods require target DBMSs expose query plans.

• Top-10 DBMSs* support exposing query plans.

• Advancing automated testing technique
• The proposed methods can efficiently find bugs, but cannot

demonstrate the absence of bugs.

*https://db-engines.com/en/ranking/relational+dbms

Discussion: Bug-finding Techniques

54

• The methods we covered
• Metamorphic testing

• Differential testing

• The methods we did not cover
• Fuzzing

• Test suites and benchmarking

• Verification

Fuzzing

55

SELECT * FROM t0;
…

Validating

SEL?CT * FROM t0;

SEL?CT * FROM t0EOFEOF;

…
Memory
corrupt?

Generating Test Cases

Fuzzing can only find memory-related bugs.
We aim to efficiently find logic bugs and performance issues.

[1] Zhong, Rui, et al. "Squirrel: Testing database management systems with language validity and coverage feedback." Proceedings of

the 2020 ACM SIGSAC Conference on Computer and Communications Security. 2020.

Squirrel[1]

Test Suites and Benchmarking

56

We aim to automatically
construct such test cases
for finding bugs.

[1] Website, "SQLite Test Suite", https://github.com/sqlite/sqlite/tree/5cc4ab93/test

[2] Website, "TPC-H", https://www.tpc.org/tpch/

Performance benchmark TPC-H[2]

SQLite test suite[1]

Test case

Expected result

https://github.com/sqlite/sqlite/tree/5cc4ab93/test
https://www.tpc.org/tpch/

Verification

57

Specification

SELECT * FROM t0;

Test cases

Check correctness

Verification can prove the target program is theoretical bug-free, but suffer
from scalability problem.
We aim to efficiently find bugs in practice.

[1] Malecha, Gregory, et al. "Toward a verified relational database management system." POPL 2010.

[2] Diana, Rodrigo, et al. "A symbolic model checking appproach to verifying transact-SQL." SMC 2012.

Verified DBMS[1], Verified T-SQL[2]

Mathematical
abstraction

Future Work

58

• How to simulate real-world database workload?
• Query plans approximate queries and data distribution.

• The table has an index -> IndexScan in the query plan
• The table does not have an index -> FullScan in the query plan

• How to verify DBMSs in a practical way?
• Query plans are suitable abstractions of DBMSs with limited states.

• How to detect bugs in various DBMSs?

HashJoin

Left child Right child<

Future Work: Beyond Query Plans

59

• Understand and utilize intermediate representations in testing

Compiler: LLVM

AI system: TVM

Publications During PhD Study

60

1) Jinsheng Ba, Manuel Rigger. (2024). Finding Performance Issues in Database Engines via Cardinality
Estimation Testing. In Proceedings of International Conference on Software Engineering (ICSE).

2) Jinsheng Ba, Manuel Rigger. (2024). Keep It Simple: Testing Databases via Differential Query Plans. In
Proceeding of ACM Management of Data (SIGMOD)

3) Jinsheng Ba, Manuel Rigger. (2023). Testing Database Engines via Query Plan Guidance. In
Proceedings of International Conference on Software Engineering (ICSE) Distinguished Paper Award

4) Jinsheng Ba, Manuel Rigger. (2024). Towards a Unified Query Plan Representation. (In submission).

5) Jinsheng Ba, Gregory J Duck, and Abhik Roychoudhury. (2022). Efficient Greybox Fuzzing to Detect
Memory Errors. In The 37th IEEE/ACM International Conference on Automated Software Engineering
(ASE) Distinguished Paper Award

6) Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and Abhik Roychoudhury. (2022). Stateful Greybox
Fuzzing. In 31st USENIX Security Symposium (SEC)

© Copyright National University of Singapore. All Rights Reserved.

Conclusion

Query plans, as a readily available source of information,
can make testing more efficient and effective.

	Default Section
	Slide 1: Testing Database Engines via Query Plans
	Slide 2: Thesis Committee
	Slide 3: Database Management Systems (DBMSs)
	Slide 4: Database Management Systems (DBMSs)

	Database Management Systems (DBMSs)
	Slide 5: Database Management Systems (DBMSs)
	Slide 6: Core Challenges For Automatic Testing
	Slide 7: State-of-the-art Research

	Thesis Statement
	Slide 8: Thesis Statement
	Slide 9: What is a Query Plan?
	Slide 10: What is a Query Plan?
	Slide 11: Query Plan Representations
	Slide 12: Studied Target DBMSs
	Slide 13: Query Plan Study
	Slide 14: Operations and Properties
	Slide 15: Research Overview
	Slide 16: Cardinality Estimation Restriction Testing (CERT)
	Slide 17: Problem: How to Identify Performance Issues?
	Slide 18: Challenge: No Ground Truth
	Slide 19: Existing Solution: Differential Testing
	Slide 20: Existing Solution: Equivalent Queries
	Slide 21: What Affects Performance?
	Slide 22: What Constitute SQL Optimization?
	Slide 23: Idea

	Cardinality Estimation Restriction Testing (CERT)
	Slide 24: Cardinality Estimation Restriction Testing (CERT)
	Slide 25: How to restrict queries?
	Slide 26: How to restrict queries?
	Slide 27: Evaluation: Issues Found
	Slide 28: Evaluation: Performance Analysis
	Slide 29: Bug Analysis

	Differential Query Plans (DQP)
	Slide 30: Query Plan Guidance (QPG)
	Slide 31: Problem: How To Generate Test Cases?
	Slide 32: Previous Test Case Generation Methods
	Slide 33: Previous Test Case Generation Methods
	Slide 34: Idea
	Slide 35: Query Plan Guidance
	Slide 36: Step 1 & 2: Query Generation and Validation
	Slide 37: Step 3: Query Plan Collection
	Slide 38: Step 4: Database State Mutation

	Query Plan Guidance (QPG)
	Slide 39: Query Plan Guidance (QPG)
	Slide 40: Evaluation: New Bugs
	Slide 41: Differential Query Plans (DQP)
	Slide 42: Transformed Query Synthesis (TQS)
	Slide 43: TQS Study

	Differential Query Plans (DQP)
	Slide 44: Differential Query Plans (DQP)
	Slide 45: Evaluation
	Slide 46: Evaluation
	Slide 47: Unified Query Plan Representation (Uplan)

	Unified Query Plan Representation (Uplan)
	Slide 48: Unified Query Plan Representation (Uplan)
	Slide 49: Application: Testing
	Slide 50: Application: Testing
	Slide 51: Review: Our Methods
	Slide 52: Impact
	Slide 53: Research Scope and Limitations
	Slide 54: Discussion: Bug-finding Techniques
	Slide 55: Fuzzing
	Slide 56: Test Suites and Benchmarking
	Slide 57: Verification
	Slide 58: Future Work
	Slide 59: Future Work: Beyond Query Plans
	Slide 60: Publications During PhD Study
	Slide 61: Conclusion
	Slide 62: WARNING: BACKUP SLIDES
	Slide 63: Overview
	Slide 64: Query Plan Study
	Slide 65: Testing: Differential Testing
	Slide 66: Testing: Metamorphic Testing
	Slide 67
	Slide 68: DBMSs’ Reliability is Critical
	Slide 69: How to Avoid False Positive?
	Slide 70: Comparable Query Plans
	Slide 71: Checking Structural Similarity
	Slide 72: Evaluation: Accuracy
	Slide 73: Step 4: Database State Mutation
	Slide 74: Query Plan Enforcement
	Slide 75: Query Plan Enforcement
	Slide 76: Evaluation: Efficiency
	Slide 77: Evaluation: New Bugs
	Slide 78: Discussion: Other Performance Issues
	Slide 79: What is a Query Plan?
	Slide 80
	Slide 81: Evaluation: Covering unique query plans
	Slide 82: Goal
	Slide 83: Query Plan Applications
	Slide 84: Application: Visualization
	Slide 85: Application: Benchmarking
	Slide 86: Research Overview
	Slide 87: Artifact
	Slide 88: Existing Solution: Benchmarking
	Slide 89: Challenge 2: Long-wait and Unstable Execution time
	Slide 90: How to restrict queries?
	Slide 91: How to restrict queries?
	Slide 92: How to restrict queries?
	Slide 93: How to restrict queries?
	Slide 94: How to restrict queries?
	Slide 95: Formats
	Slide 96: Goal

