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Abstract

Testing Database Engines via Query Plans

by

Jinsheng Ba

Doctor of Philosophy in Computer Science

National University of Singapore

Database Management Systems (DBMSs) are fundamental software systems that
store, maintain, and retrieve data. They are used in almost every personal computer,
mobile device, and server. Therefore, it is important to find bugs before they incur
severe consequences. Automatic testing is an efficient and effective technique to
find crash bugs, which terminate DBMSs, but is struggling to detect logic bugs and
performance issues. Logic bugs refer to incorrect results, while performance issues
refer to unexpected slow performance. Unlike crash bugs, both categories of bugs
do not terminate DBMSs and are hard to observe by existing automatic testing
methods. Triggering them requires valid test cases, which are also challenging to
generate automatically. In this thesis, I advance automatic testing to efficiently find
logic bugs and performance issues in DBMSs. My approaches are united by the
idea of leveraging query plans, which are internal representations of how a DBMS
executes a query, for automatically testing DBMSs. I put forward the following
thesis statement: Query plans allow efficient and effective testing of DBMSs by
providing internal execution information. I propose four research works to utilize
query plans for testing. First, to detect performance issues, I propose Cardinality
Estimation Restriction Testing (CERT), which inspects estimated cardinalities in
query plans without measuring execution time. Second, to identify logic bugs, I
propose Differential Query Plans (DQP), which inspects the result consistency of
multiple query plans of the same query. Third, to generate diverse test cases for
exploring target systems thoroughly, I propose Query Plan Guidance (QPG) for
guiding the test case generation process towards diverse query plans. Last, observing
that query plans cannot be conveniently used as they are exposed in various DBMS-
specific representations, I propose a Unified query plan representation (UPlan) based

vii



on an empirical study aiming to reduce the effort of building applications based on
query plans. Since most DBMSs—including commercial ones—expose query plans to
the user, I consider CERT , DQP, QPG, and UPlan generally applicable, black-box
approaches for finding logic bugs, performance issues, and building applications on
query plans. These methods are effective as they found more than 100 unique and
previously unknown bugs in several widely used DBMSs. I view these results as
a step towards more reliable DBMSs, and expect this statement of utilizing query
plans for testing can be widely adopted to tackle more problems, such as test suite
evaluation, debugging deployed DBMSs, and optimization checking.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Problem
Database Management Systems (DBMSs) are fundamental software systems

used to store, retrieve, and query data. The global DBMSs market has grown to
$163.93 billion in 2023 at a high compound annual growth rate of 15.4% [148].
DBMSs are used in almost every computing device [185, 187, 184], thus any bug
has a potentially severe consequence. The problem that this thesis tackles is how to
effectively and efficiently find bugs in DBMSs for improving reliability. The growth
of the complexity of DBMSs has exacerbated this problem. As a concrete example,
MySQL has been evolving over the last twenty years to a massive 15 million lines of
code, and was disclosed 581 bugs in only 2022 according to its issue tracker.1

1.2 Challenges and State of the Art
Automatic testing is a practical and widely used method for finding bugs. How-

ever, it is typically effective in finding crash bugs, which terminate DBMSs, but is
struggling to find logic bugs and performance issues. Logic bugs refer to incorrect
results, while performance issues refer to unexpected slow performance. Finding
them by testing faces two major challenges:

C.1 Text Oracle. Test oracle refers to a mechanism that determines whether the
system executes correctly for an input. Unlike crash bugs, which terminate

1https://bugs.mysql.com/
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CHAPTER 1. INTRODUCTION

Code 1.1: An example of logic bugs and performance issues.
1 CREATE TABLE users(user_id DECIMAL PRIMARY KEY);
2 CREATE TABLE transactions(transitition_id TEXT, amount DECIMAL(10,2) NOT NULL);
3 CREATE INDEX i0 ON transactions(transitition_id(5));
4 INSERT INTO users VALUES(1), (2);
5 INSERT INTO transactions VALUES(’1_c12934’, 100000), (’1_e3b664’, -10);
6
7 SELECT IFNULL(SUM(amount), 0) as balance FROM users JOIN transactions ON

transactions.transitition_id = users.user_id; -- {0.00}
8 SELECT IFNULL(SUM(amount), 0) AS balance FROM users JOIN transactions ON

transactions.transitition_id = users.user_id and

transactions.transaction_id < 1000; -- 5 minutes

the system, logic bugs, which refer to incorrect results, and performance
issues, which refer to unexpected slow performance, are challenging to identify.
Code 1.1 shows an artificial example of both categories of bugs. It first creates
two tables users and transactions to simulate a bank account system, and
inserts two users and transaction records into tables. The first query in line
7 checks the balance of the user 1, and triggers a logic bug in the DBMS.
The balance should be 99990.00, instead of 0.00. Without manually inspecting
the test case, it is challenging to know whether the result is expected. The
second query in line 8 returns the execution result in 10 seconds, and triggers
a performance issue in the DBMS. Similarly, it is challenging to know whether
the execution time is expected.

C.2 Test generation. DBMSs typically accept the statements written in struc-
tured languages as inputs, so it is difficult to automatically construct test cases
that satisfy the semantic and syntax requirements of the languages and cover
diverse DBMS components. To construct the test case shown in Code 1.1, we
need to guarantee correct syntax and semantics for the test cases. To find more
bugs, we also need other diverse test cases to find bugs in different components
of target systems.

To tackle both challenges, multiple methods and techniques were proposed to
identify logic bugs and performance issues, and generate diverse and valid test cases.
However, these methods struggle to efficiently and effectively test complex program
logic in DBMSs.

For C.1, to identify logic bugs, differential and metamorphic testing are widely

2



CHAPTER 1. INTRODUCTION

used. Differential testing identifies bugs by comparing the outputs or behaviors of
multiple systems for the same test cases. RAGS [161] applied differential testing
to examine whether executing the same queries on various DBMSs returns the
same results. Metamorphic testing constructs a pair of semantic-related queries and
checks whether the results of executing them comply with a predefined relation,
NoREC [149] and TLP [150] applied metamorphic testing to examine the consistency
of executing pairs of semantic-equivalent queries on the same DBMS. DQE [162]
applies metamorphic testing to find bugs in data manipulation statements. Apart
from differential and metamorphic testing, TQS [167] splits a given input table into
several sub-tables and validates the results of the queries that join these sub-tables
by retrieving the given table. However, these methods have strict requirements
for test cases, such as NoREC requires test cases to include WHERE clause, so these
methods mostly randomly generate test cases, and limited program logic can be
tested. Additionally, some methods, such as TQS, are sophisticated and not easy to
understand and implement.

For C.1, to find performance issues, differential and metamorphic testing are also
widely used. APOLLO [89] is a differential testing method that examines whether
the same test cases exhibit similar performance under different versions of the same
DBMSs. AMOEBA [107] is a metamorphic testing method that examines whether
semantic-equivalent queries have similar performance on the same DBMS. However,
APOLLO can only find regression bugs, which are introduced in the newer version
of tested DBMSs. AMOEBA has a high false alarm rate, because complex program
logic may optimize semantic-equivalent queries significantly differently and is not
considered for testing.

For C.2, to generate diverse test cases, fuzzing is a widely used method. Fuzzing
is a method that generates or mutates inputs for finding memory-related bugs,
which typically crash target programs. General fuzzers, such as AFL [180] and
LibFuzzer [181], use code coverage to guide the test case generation process. Squir-
rel [219] and DynSQL [82] considered dependencies among statements for mutating
test cases. LEGO [104] considered statement types for mutating test cases. Sedar [50]
exchanged test cases among multiple DBMS testing suites for high-quality initial
seeds. These methods aim to generate diverse test cases but cannot find logic bugs
and performance issues.

3
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For C.2, to generate valid test cases for validating the test oracles, grammar-
based test case generation methods are widely used. NoREC , TLP, and SQLSmith
use a grammar-based generator to randomly generate test cases. However, randomly
generated test cases are challenging to cover complex program logic. AFLRight [106]
mutate test cases according to grammar definitions. However, random mutation
easily incurs invalid semantics, so complex program logic is also challenging to test.

1.3 Thesis Statement
In this thesis, I propose to advance automatic testing for efficiently finding logic

bugs and performance issues in DBMSs by the idea of leveraging query plans to
facilitate testing:

Thesis Statement

Query plans allow efficient and effective testing of database engines by provid-
ing internal execution information.

A query plan is a tree of operations that describes how a statement is executed by
a DBMS. Query plans are DBMSs’ internal representations and provide a compact
and high-level summary of how a query is executed. Our core idea is to use query
plans for efficiently and effectively testing complex program logic in DBMSs, such
as exploring diverse program behaviors and identifying bugs.

t0 t1
c0

1

c0

1

2

...

10

Database

SELECT * FROM t0 LEFT JOIN t1 
ON t0.c0=t1.c0 WHERE t0.c0=1;

CREATE INDEX i0 ON t0(c0);
SELECT * FROM t0 LEFT JOIN t1 
ON t0.c0=t1.c0 WHERE t0.c0=1;

HashJoin
(num of row=1)

Materialize
(num of row=1)
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(num of row=1)
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IndexScan t0
(num of row=1)

HashJoin
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Materialize
(num of row=1)

FullScan t1
(num of row=1)

FullScan t0
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HashJoin
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Materialize
(num of row=1)

FullScan t1
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(num of rows=10)

{1|1}

SQL statement Query plan Result

Figure 1.1: Query plan example.

Figure 1.1 shows a query plan example in PostgreSQL. Suppose we have two
tables in the database, table t0 has one column c0 with ten rows, and table t1 has one
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column c0 with one row. The query SELECT * FROM t0 LEFT JOIN t1 ON t0.c0=t1.c0

WHERE t0.c0=1 retrieves the data of joining both tables and filters the joined data.
Because the query is written in a declarative language, it has to be translated into a
query plan before executing, as shown in the right top corner. Each node in the tree
of the query plan includes an operation and associated properties. A query plan is
executed from root to leaves, and the execution results are returned from leaves to
root. In this query plan, FullScan in the leaves represents reading all data from tables.
num of row represents the estimated number of rows that will be returned after this
operation. Materialize stores data in memory so that its parent operation processes
data more efficiently. In the root node, HashJoin joins the data from FullScan t0 and
Materialize. At last, DBMS executes this query plan and returns the result.

DBMSs commonly expose query plans for tuning performance by executing the
statement EXPLAIN in a black-box manner. In Figure 1.1, we can examine the query
plans to identify potential optimization opportunities. The num of rows of FullScan t0

is ten. We can reduce the number to improve the performance by adding an index.
If we execute CREATE INDEX i0 ON t0(C0) to create an index and execute the same
query again, we can obtain the second query plan as shown in the right-down corner.
Using the index, DBMS scans the table t0 by IndexScan, which only reads part of
table t0, so that we reduce the num of rows to one, and the performance is improved.

Query plans provide internal execution information of DBMSs, and we aim to
utilize query plans to tackle the challenges C.1 and C.2 for efficiently testing complex
program logic. For example, in Figure 1.1, observing the leaves are FullScan or
IndexScan, we know whether the program logic of handling indexes is executed. This
information provides feedback for generating diverse test cases and facilitates the
identification of logic bugs and performance issues.

1.4 Research Overview
I propose three methods and present one study in this thesis to realize the thesis

statement. Figure 1.2 shows an overview of my research. DBMSs parse and optimize
SQL queries into query plans and execute them to return the result. To tackle C.1,
we propose to use query plans to 1) identify performance issues and 2) identify logic
bugs. To tackle C.2, we propose to use query plans to 3) generate diverse test cases.
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Observing that query plans are represented in DBMS-specific manners, to facilitate
the implementation of these testing methods, we studied query plan representations
and designed 4) a unified query plan representation.

SELECT * FROM t0 
LEFT JOIN t1 ON 
t0.c0=t1.c0 
WHERE t0.c0=1;

Parse & 
Optimize Execute

Database

3) Diverse test case generation 1) Identify performance Issues
2) Identify logic bugs

4) Unified plans

HashJoin
(num of row=1)

Materialize
(num of row=1)

FullScan t1
(num of row=1)

FullScan t0
(num of rows=10)

{1|1}

C.2 C.1

Figure 1.2: Research overview.

The first problem to solve is finding performance issues and belongs to C.1. I
propose the method called Cardinality Estimation Restriction Testing (CERT) [86]
for identifying performance issues by inspecting estimated cardinalities in query plans,
and this work shows that performance issues can be efficiently found by checking
query plans without execution. DBMSs are prone to performance issues, where a
DBMS produces an inefficient query plan that might lead to the slow execution of
a query. Detecting performance issues is a longstanding problem and inherently
challenging, because no ground truth information on an expected execution exists.
Estimated cardinalities, which represent the estimated number of rows returned by
operators in query plans, are shown to be the most important component of query
optimization [100]. Therefore, my idea to find performance issues is that finding and
fixing issues in cardinality estimation may result in the highest performance gains. I
designed a method to check whether a query has a smaller number of estimated rows
than a more restrictive query. For example, given a query with LEFT JOIN, we replace
LEFT JOIN with an INNER JOIN to construct the restricted query, and the estimated
number of rows of the restricted query should be no more than the estimated number
of rows of the unrestricted query. Otherwise, there is a potential issue. CERT
eschews executing queries, which is costly and prone to performance fluctuations. I
evaluated CERT on three widely used and mature DBMSs: MySQL, TiDB, and
CockroachDB. CERT found 13 unique, previously unknown issues that have been
confirmed or fixed by the developers with no false alarms. CERT validates 386×
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more queries than AMOEBA in the same time period. I believe that these results
demonstrate that CERT might become a standard technique in DBMS developers’
toolbox, due to its efficiency and effectiveness.

The second problem to solve is finding logic bugs and belongs to C.1. Recently,
researchers have proposed a testing approach called Transformed Query Synthesis
(TQS) specifically designed to find logic bugs in join optimizations, which are a
core component in DBMSs. TQS is a sophisticated approach that splits a given
input table into several sub-tables and validates the results of the queries that join
these sub-tables by retrieving the given table. We studied TQS’s bug reports, and
found that 14 of 15 unique bugs were reported by showing discrepancies in executing
the same query with different query plans. Therefore, I propose the method called
Differential Query Plans (DQP) [87] as a simple alternative approach to TQS. DQP
enforces different query plans for the same query and validates that the results
are consistent. DQP can reproduce 14 of the 15 unique bugs found by TQS, and
found 26 previously unknown and unique bugs. These results demonstrate that a
simple approach with limited novelty can be as effective as a complex, conceptually
appealing approach. We hope that the practicality of our approach—I implemented
in less than 100 lines of code per system—will lead to its wide adoption.

The third problem to solve is generating diverse test cases and belongs to
C.2. I propose the concept called Query Plan Guidance (QPG) [85] for guiding
automated testing towards diverse query plans for diverse test cases aiming to expose
more bugs, and QPG shows a significant advantage over code coverage guidance
and random generation methods. I tackled this challenge based on the intuition
that by steering testing towards exploring diverse query plans, we also explore
more interesting behaviors—some of which are potentially incorrect. Technically,
I designed a mutation strategy that gradually applies promising mutations to the
database state, causing the DBMS to create different query plans for subsequent
queries. I applied QPG to three mature, widely-used, and extensively tested DBMSs—
SQLite, TiDB, and CockroachDB—and found 53 unique, previously unknown bugs
that have been confirmed or fixed by developers. Considering the effectiveness of
the mutation strategy, this method exercises 4.85–408.48× more unique query plans
than a naive random generation method and 7.46× more than a code coverage
guidance method.
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The last problem to solve is efficiently utilizing query plans facilitating the above
methods for tackling C.1 and C.2. For the above three testing methods, CERT ,
DQP, and QPG, I observed that query plans are specific to DBMSs, as they reflect
their internal execution steps, which differ widely across DBMSs. The plethora of
different representations makes it challenging to efficiently build applications on
query plans including the testing methods in this thesis. For example, a predicate
in the WHERE clause of SQL corresponds to a concrete step to filter data in the
query plans of TiDB [23], but corresponds to a property of another step to scan
tables in the query plans of PostgreSQL [186]. In this way, QPG has to implement
DBMS-specific logic to parse the predicates. I conducted an exploratory case study
to investigate query plan representations in nine widely-used DBMSs. Our study
shows that DBMS-specific query plan representations consist of three conceptual
components: operations, properties, and formats. Based on the study, I propose a
unified query plan representation and show its utility in three applications, namely
visualization, testing, and benchmarking. The results show that existing testing
methods can be efficiently adopted to multiple DBMSs, and we found 17 unique
and previously unknown bugs in previously untested DBMSs. Additionally, existing
visualization tools can support multiple DBMSs based on the unified query plan
representation with moderate implementation effort, and comparing unified query
plans across DBMSs provides actionable insights to improve their performance. We
expect that the unified query plan representation will enable the exploration of
additional application scenarios, such as test suite evaluation, debugging deployed
DBMSs, and optimization verification.

1.5 Contributions
My contributions impact the current state of finding bugs in DBMSs. I summarize

the contributions in three levels as follows.

1.5.1 Conceptual Contributions

Conceptually, I propose using query plans in automated testing to efficiently and
effectively test complex program space. Query plans were initially exposed to users
for performance tuning and provided a summary of internal execution information.
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I demonstrated that using query plans can efficiently and effectively test complex
program space, so more bugs can be found including logic bugs and performance
issues. I expect that the research community will take the thesis forward, to further
understand and utilize the query plans in testing.

1.5.2 Technical Contributions

To underpin the conceptual contribution, I make the following technical contri-
butions:

• A novel technique to identify performance issues by inspecting query plans.
Query plans include cardinality estimations, which have been demonstrated to
be the most important part of query optimization. I designed a metamorphic
relation to find performance issues by inspecting the inconsistency of cardinality
estimations. The method found 13 unique and previously unknown bugs.

• A simple method to find logic bugs. A state-of-the-art test oracle TQS finds
logic bugs by a sophisticated method that derives expected results by splitting
and manually joining tables. However, we found that even a simple and
straightforward test oracle—different query plans of the same query should
return the same result—can be as efficient as TQS. We designed a method to
realize this simple test oracle and the results show that this test oracle found
26 unique and previously unknown bugs.

• A novel technique to guide the test case generation process with the guidance
of query plans. I observed that the query plans of the queries in previously
found bugs are compact and simple, so I designed a concrete testing approach
that mutates databases aiming to cover more diverse query plans. The results
showed that this method found 53 unique and previously unknown bugs in a
black-box manner.

• A comprehensive empirical study of query plan representations. I studied the
query plan representations of nine popular DBMSs, and proposed a unified
query plan representation to reduce the work of building applications on query
plans. By integrating the unified query plan representation, the above testing
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methods can be directly applied to multiple targets, and found 17 unique and
previously unknown bugs.

1.5.3 Practical Contributions

I made the source code and experimental data publicly available allowing the
research community to better reproduce and advance existing research work.

• CERT was integrated into SQLancer2 and is public.

• QPG was integrated into SQLancer3 and is public.

• DQP was integrated into SQLancer4 and is public.

• UPlan has been publicly available.5

The integration amplifies the practical impact of my research in this thesis. More
than 20 bugs have been found after publishing our papers. CERT attracted an
open-source contributor to implement this method for more DBMSs.6 Industry also
showed interest in these methods. TiDB invited me to give a talk and considered
supporting both QPG and CERT in their internal testing workflow. SQLite and
CockroachDB sent emails to us requesting more technical details of QPG.

1.6 Research Scope
In this thesis, I restrict the research scope to the testing technique for finding bugs

in DBMSs, especially for logic bugs and performance issues. The work in this thesis
does not aim to improve other techniques, such as verification and benchmarking.
CERT , DQP, and QPG are complementary to existing bug-finding methods, and
UPlan can facilitate various applications on query plans. In this thesis, I do not
consider the other reliability problems related to DBMSs, such as the reliability
problem of operating systems that DBMSs are running on.

2https://github.com/sqlancer/sqlancer/issues/822
3https://github.com/sqlancer/sqlancer/issues/641
4https://github.com/sqlancer/sqlancer/issues/918
5https://unifiedqueryplan.github.io/
6https://github.com/sqlancer/sqlancer/issues/895
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1.7 Outline
The remainder of this thesis is organized as follows. In Chapter 2, I provide the

necessary background knowledge for this thesis including DBMSs and query plans.
Next, in Chapter 3, I present the approach CERT to solve the problem of test oracle
for finding performance issues. Then, in Chapter 4, I present the approach DQP as
a simple test oracle for finding logic bugs. After that, in Chapter 5, I introduce the
concept QPG to solve the problem of test case generation. Last, in Chapter 6, I
present our empirical study of query plan representations and propose our design of
a unified query plan representation. In Chapter 7, I summarize the related work.
Lastly, in Chapter 8, I conclude this thesis as well as discuss potential future research
directions.
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Chapter 2

Background

In this chapter, I introduce the necessary background knowledge about DBMSs
and related techniques for finding bugs in DBMSs.

2.1 Database Management Systems
DBMSs serve as an interface between the database and its users or programs,

helping users to store, manipulate, and query data in a convenient and efficient
way. Management of data involves both defining data models for the storage of data
and providing mechanisms for the manipulation of data. Data models are used to
organize data into entities that denote objects in the real world including several
attributes to illustrate characteristics of entities. This thesis involves four popular
data models: 1) the traditional relational model [42], which organizes data into tables,
in which rows are entities and columns are attributes, 2) the graph data model [6],
which organizes data into graphs, in which nodes are entities, nodes’ properties
are attributes, and edges are relations of entities, 3) the time series model [121],
which organizes data as a series of data points ordered over time, in which data
points are entities and fields in data points are attributes, and 4) the document
model [206], which organizes data into semi-structured and unstructured schemas,
such as JavaScript Object Notation (JSON) and Extensible Markup Language
(XML), in which documents are entities and documents’ fields are attributes. To
manipulate and query data, most DBMSs adopt declarative languages, which express
only the logic of a computation without specifying its specific execution. This thesis
involves Structured Query Language (SQL) [27] for the relational and the time series
data models, Cypher Query Language (CQL) [49] for the graph data model, and
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MongoDB Query Language (MQL) [8] for the document model. CERT , DQP, and
QPG mainly consider the relational data model and SQL, which have been adopted
by most modern DBMSs, while UPlan considers all the above data models and
declarative languages for a comprehensive study.

2.1.1 Structured Query Language

SQL is the most commonly used language for manipulating the data in DBMSs [27],
and has been standardized by ISO/IEC 9075. SQL is widely supported by DBMSs;
for example, according to a popular ranking,1 the 10 most popular DBMSs support
it. SQL consists of many types of statements[179], which can be classified into three
main sub-languages:

1. Data Query Language (DQL), which provides a SELECT statement to query
data.

2. Data Definition Language (DDL), which is used to create and modify the
schemas of data objects, for example, CREATE, DROP, and ALERT.

3. Data Manipulation Language (DML), which is used to modify the contents of
data objects, for example, INSERT and UPDATE.

While DDL and DML statements can affect the database, queries (i.e., DQL state-
ments) typically cannot. For CERT , DQP, and QPG, our test cases consist of DQL,
DDL, and DML statements.

Code 2.1 shows the EBNF representation [133], a metasyntax notation to express
context-free grammars, of a SQL query, whose features I considered in CERT , DQP,
and QPG. A query starts with the SELECT keyword. It can optionally be succeeded
by a DISTINCT clause that specifies that only unique records should be returned. A
JOIN clause joins two tables or views; various joins exist that differ on whether and
what rows should be joined when the join predicate evaluates to false. A query
can contain a single WHERE clause; only rows for which its predicate evaluates to
true are included in the result set. Similar to DISTINCT, the GROUP BY clause groups
rows that have the same values into a single row. It can be followed by a HAVING

clause that excludes records after grouping them. The LIMIT clause is used to restrict
1https://db-engines.com/en/ranking as of March 2023.
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Code 2.1: The EBNF representation of a query.
1 SELECT [DISTINCT]
2 select_expression (, select_expression)*
3 FROM table_reference (INNER | LEFT | RIGHT | FULL | CROSS JOIN

table_reference)*
4 (WHERE predicate)+
5 (GROUP BY predicate
6 (HAVING predicate)+)+
7 (LIMIT row_count)+ ;

the number of records that are fetched. More advanced features, such as window
functions, common table expressions (CTEs), and subqueries can be used. While I
did not consider them in this thesis, I believe that the proposed approaches could
be extended to support these advanced features.

2.1.2 Query Plans

A query plan is a tree of operations that describes how a query is executed by a
specific DBMS, and we leverage query plans in this thesis to find bugs in DBMSs.
DBMSs literature distinguish between logical and physical query plans [160], the
latter of which is typically exposed by DBMSs to users for understanding and
optimizing performance-critical queries (e.g., by providing hints to the DBMS).
Although not specified by the standard, most mature relational DBMSs, including
the 10 most popular relational DBMSs according to the DB-Engines ranking,2 allow
users to obtain a textual representation of a physical query plan by prefixing a query
with EXPLAIN. For a better debugging experience, exposed physical query plans may
include additional information, such as the estimated cost or predicate expressions
(e.g., used in WHERE clauses). While the logical query plan closely corresponds to
the original declarative query, the physical query plan maps every logical operator
to a so-called physical one that can be executed by the DBMS. For example, to
translate a read operation on a table, the DBMS might choose one of potentially
multiple so-called physical access methods (e.g., a full table scan, or a partial scan
with index). Similarly, to join two tables, the DBMS might decide between multiple
join algorithms (e.g., hash join or nested loop join) [160]. The query plan is typically
short for the physical query plan, so, without special note, the query plan refers to
the physical query plan in this thesis.

2https://db-engines.com/en/ranking/relational+dbms
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2.1.3 Query Optimization

DBMSs include query optimizers that, after parsing the SQL query, determine an
efficient query plan. Determining an efficient query plan is challenging, since many
factors might influence the plan’s performance. One of the most commonly used
models is the cost-based [29]—the query plan with the lowest estimated performance
cost is chosen. The classical cost-based model includes three major components:
cardinality estimation, cost model, and plan space enumeration. To obtain an
efficient query plan, the component of plan space enumeration enumerates some
subset of valid query plans. The component of cardinality estimation evaluates the
estimated number of cardinality for each query plan. Using the estimated cardinality
as principle input, the component of the cost model chooses the query plan with the
lowest estimated cost.

2.1.4 Cardinality Estimation

Cardinality estimation was found to be the most important factor that affects
the quality of query optimization [100], and I used the estimated cardinalities for
finding performance issues in this thesis. Cardinality estimators typically obtain
data statistics of the tables to be queried by sampling [75], through histograms [158],
or machine learning algorithms [41, 199, 94]. Then, they enumerate all sub-plan
queries, which are queries that process only a subset of tables in a query, and
estimate how many rows they fetch. For example, for a query A ⋊⋉ B ⋊⋉ C (⋊⋉
denotes a join), cardinality estimators could estimate the cardinalities of A,B,C
respectively, and then estimate the cardinalities of A ⋊⋉ B, B ⋊⋉ C, A ⋊⋉ C, and
A ⋊⋉ B ⋊⋉ C. Lastly, the estimated cardinalities of these sub-plan queries help to
decide the join order—whether A ⋊⋉ B or B ⋊⋉ C should be executed first.

2.2 Bug-finding Techniques
Both industry and academia have been tackling the problem of DBMSs’ reliability

for many years. In the following, I describe the most important types of techniques
and research trends highlighting their advantages and drawbacks. More related
works about these techniques are discussed in Section 7.1.

15



CHAPTER 2. BACKGROUND

2.2.1 Testing

Testing is a cost-efficient and practical technique for experimentally finding bugs.
Suppose we have a program P that accepts an input I and returns an output O by
executing the input P (I) => O, a plethora of testing techniques exist to look for
the inputs {Ix, ..., Iy} whose outputs {Ox, ..., Oy} are unexpected. An unexpected
output indicates a bug. We discuss three common testing methods for finding bugs
in DBMSs: differential testing, metamorphic testing, and fuzzing.

Differential testing [114] is a method to identify bugs by comparing the outputs
or behavior of multiple systems for the same input. For the systems P and P ′, this
method evaluates whether P (I) == P ′(I). Slutz et al. [161] applied differential
testing in a system called RAGS, which compares the outputs of executing the
same input on different DBMSs to find bugs. Jung et al. proposed APOLLO [89],
which compares the execution time of a query on two versions of a DBMS to find
unexpected performance degradation. Both differential testing methods are effective
as they successfully found hundreds of bugs without accessing the source code of
DBMSs. However, the differential testing method requires that the implementations
of different DBMSs or different versions of the same DBMS have the same semantics
and performance for the same inputs. Most DBMSs typically have their own language
dialects, which restrict the efficiency of the differential testing method.

Metamorphic testing [31, 32] is a method to generate both inputs and validate
outputs for finding bugs that are due to incorrect outputs. This method constructs
an input I to a system and its output O to derive a new input I ′ (and output
O′) and checks whether a so-called Metamorphic Relation holds between O and O′.
SQLancer3 implemented two metamorphic relations NoREC [149] and TLP [150],
both of which construct pairs of semantic-related queries and check whether their
outputs comply with the expected metamorphic relations. By constructing another
input and using its output as a reference, metamorphic testing can efficiently find
incorrect outputs. However, due to the constraints of metamorphic relations, it is
challenging to automatically construct diverse inputs to explore various components
and complex program space of the target system.

Fuzzing [116] is a method that generates or mutates inputs to target programs for
3https://github.com/sqlancer/sqlancer
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finding memory-related bugs, such as buffer overflow4 and double free.5 AFL [180]
and LibFuzzer [181] are the two most influential fuzzers, which randomly mutate a
given input I aiming to maximize code coverage. Fuzzing methods found a huge
number of memory-related bugs in DBMSs, such as more than 100 bugs in the
DBMS SQLite.6 Fuzzing relies on general input generators, so it can be easily
applied to multiple systems. However, general input generators by random mutation
incur many invalid inputs due to syntax and semantic constraints. Therefore fuzzing
is struggling to test complex program space, which requires syntax and semantic
correct test cases, and cannot find non-crash bugs, such as incorrect outputs.

2.2.2 Verification

Formal verification is another powerful technique to verify whether the system
behaves correctly with respect to a formal specification so as to prove the absence of
violations of properties, such as bugs. Given a program P , we need to abstract its
behaviors into P ′, and a formal verification technique proves whether P ′ satisfies a
given specification S. If so, P ′ works correctly with respect to S. Various methods
of formal verification have been used for verifying DBMSs. Model checking [36] is a
method for a systematically exhaustive exploration of the mathematical finite model,
and Diana et al. [39] verified part of the SQL specifications by this method. The
exhaustion process verifies all possible states to guarantee the correctness of the target
system, but suffers from the state explosion problem that the number of possible
states exceeds the calculation capability of modern computers. To apply this method
to a real-world system, users have to abstract the system into a finite model, which
is a non-trivial task, such as how to abstract the system for verifying performance
guarantees. Malecha et al. [108] implemented a verified relational DBMS, whose
specifications were written and verified in Coq,7 an interactive theorem prover for
formal proofs. However, as highlighted by the authors, it is still challenging to
comprehensively abstract the states and prove complicated data structures, such as
pointers. Formal verification can give a theoretical guarantee for verifying small-scale

4https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
5https://owasp.org/www-community/vulnerabilities/Doubly_freeing_memory
6https://bugs.chromium.org/p/oss-fuzz/issues/list?q=sqlite3&can=1
7https://coq.inria.fr/
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abstracted models, but is struggling with handling a whole complex program space
in DBMS.

2.2.3 Test Suites and Benchmarking

The most straightforward and conventional methods to find bugs are through
manually constructing test suites and benchmarking. Suppose we have a set of
programs {P0, ..., Pm}, we execute an input I on each program Pi and evaluate
its property against a predefined baseline Bi. Most DBMSs maintain their own
test suites. These test suites are typically high-quality but small because they are
manually crafted. Benchmarking is used for performance regression testing, because
performance is one of the most important metrics for DBMSs. TPC-H [123], TPC-
DS [177], JOB [100] are widely used benchmarks for DBMSs. However, constructing
a benchmark requires much manual effort, and it is inefficient to evaluate DBMSs in
a limited number of scenarios, which may not be complex enough.
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Chapter 3

Cardinality Estimation Restriction
Testing

To identify performance issues, in this chapter, we propose Cardinality Estimation
Restriction Testing (CERT), a novel technique that finds performance issues through
the lens of cardinality estimation. CERT has been published in the 46th International
Conference on Software Engineering (ICSE’24) [86].

3.1 Introduction
Performance is one of the most important metrics for DBMSs, especially in

today’s big data era. From a software standpoint, the mainstream direction to
optimize DBMSs’ performance is to improve query optimization, that is, translating
queries specified in the Structured Query Language (SQL) to an efficient query plan
that includes concrete steps to execute a query. An efficient query plan is expected
to have the best performance, by estimating its attributes, such as cardinality, CPU,
memory, and IO [100]. To balance the trade-off between spending little time on
optimization, which is performed at run time, and finding an efficient query plan,
researchers and practitioners have invested decades of effort into query optimization,
covering directions such as search space exploration for join ordering [127, 47, 46],
index data structures [61], execution time prediction [4, 197], or parallel execution
on multi-core CPUs [55] and GPUs [134].

Finding performance issues in DBMSs—also referred to as optimization opportu-
nities or performance bugs—is challenging. Given a query Q and a database D, we
want to determine whether executing Q on D results in unexpectedly suboptimal per-
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formance. In general, no ground truth is available that specifies whether Q executes
within a reasonable time. To exacerbate this issue, DBMSs use various heuristics
and cost models during optimizations, or make trade-offs in optimizing specific kinds
of queries over others. Second, the execution time of Q might be significant if D is
large, making it time-consuming to measure Q’s actual performance. Given that
the execution time depends on various factors of the execution environment [122]
(e.g., the state of caches), it might even be necessary to execute Q multiple times to
obtain a reasonably reliable measure of its execution time. Cloud environments are
in particular prone to noise [97]; a report on testing SAP HANA [9] has recently
stressed that performance testing for cloud offerings of DBMSs—such as SAP HANA
Cloud, which runs in Kubernetes pods—is one of the main challenges in testing
DBMSs due to inherently noisy environments.

Benchmark suites such as TPC-DS [177] or TPC-H [123] are widely used in
practice to monitor DBMSs’ performance over versions through predetermined per-
formance baselines, which could be specified [147, 202, 205]. However, deriving an
appropriate baseline is challenging and might result in false alarms. Automated
testing techniques have been proposed to find performance issues without the need
of curating a benchmark suite. APOLLO [89] generates databases and queries
automatically and validates whether executing the query on different versions of the
DBMS results in significantly different execution times. However, APOLLO can
only find regression bugs. AMOEBA [107] finds performance issues by examining
discrepancies in the execution time of a pair of semantically equivalent queries.
However, semantically equivalent queries do not necessarily exhibit a similar per-
formance as the issues found by AMOEBA have a high false positive rate—only 6
of 39 issues were confirmed by the developers, 5 of which were fixed [107]. For the
above methods, queries need to be executed on sufficiently large databases to detect
significant performance discrepancies.

In this work, we propose Cardinality Estimation Restriction Testing (CERT), a
general technique that finds performance issues by testing the DBMSs’ cardinality
estimation. Cardinality estimation is the process in which cardinality estimator
computes estimated cardinalities, the estimated numbers of rows that will be returned.
Since estimated cardinalities are approximate, it is infeasible to check for a specific
number. Rather, the core idea of our approach is that making a given query more
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restrictive should cause the cardinality estimator to estimate that the more restrictive
query should fetch at most as many rows as the original query. More formally, given
a query Q and a database D, Card(Q,D) denotes the actual cardinality, that is, the
exact number of records to be fetched by Q on D. If we derive a more restrictive
query Q′ from Q, Card(Q′, D) ≤ Card(Q,D) always holds. EstCard(Q,D) denotes
the estimated cardinality for Q, and we expect EstCard(Q′, D) ≤ EstCard(Q,D)
to also hold for any DBMS. We refer to this property as cardinality restriction
monotonicity. Any violation of this property indicates a potential performance issue.

CERT addresses the aforementioned challenges. Cardinality estimation accuracy
was shown to be the single most important component for deriving an efficient query
plan [100]. Therefore, we believe that pinpointing issues in cardinality estimation
would help developers focus on the most relevant issues, addressing which might
result in significant performance gains. Additionally, this idea is applicable to finding
a broader range of performance issues. For example, we found that other kinds of
query optimization issues can be exposed by unexpected estimated cardinalities, as
shown in Code 3.2. Furthermore, estimated cardinalities can be readily obtained by
DBMSs without executing Q; DBMSs typically provide a SQL EXPLAIN statement
that provides this information as part of a query plan, allowing our technique to
achieve high throughput. In addition, since our method does not measure run-time
performance, it can be used in noisy environments, and minimal test cases that
demonstrate the performance issue can be automatically obtained [214]. Finally,
CERT is a black-box technique that can be applied even without access to the source
code.

Code 3.1 shows a running example demonstrating CERT . We randomly generate
SQL statements as shown in lines 1–4 to create a database state and ensure that
each table’s data statistics are up to date in lines 5–6. Then, we randomly generate a
query with a LEFT JOIN and derive a more restrictive query by replacing the LEFT JOIN

with an INNER JOIN as shown in lines 8–9. The second query is more restrictive
than the first query as INNER JOIN should always fetch no more rows than LEFT JOIN.
We examined their estimated cardinalities in query plans, obtained by using an
EXPLAIN statement. Despite having made the query more restrictive, the cardinality
estimator estimates that the first query fetches 20 rows, while the second one fetches
60 rows, which is unexpected. The root cause was an incorrect double-counting
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Code 3.1: This running example demonstrates a performance issue found by CERT
in CockroachDB.
1 CREATE TABLE t0 (c0 INT);
2 CREATE TABLE t1 (c0 INT);
3 INSERT INTO t0 VALUES (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11),

(12), (13);
4 INSERT INTO t1 VALUES (21),(22),(23),(24),(25);
5 ANALYZE t0;
6 ANALYZE t1;
7
8 EXPLAIN SELECT * FROM t0 LEFT JOIN t1 ON t0.c0<1 OR t0.c0>1; -- estimated

rows: 20
9 EXPLAIN SELECT * FROM t0 INNER JOIN t1 ON t0.c0<1 OR t0.c0>1; -- estimated

rows: 60
10 -------------------------------------------------------------------------------
11 • cross join(left outer) • cross join
12 | estimated row:20 | estimated row:60
13 | pred:(c0<1)OR(c0>1) |-• filter
14 |-• scan | | estimated row:12
15 | estimated row:13 | | filter:(c0<1)OR(c0>1)
16 | table: t0@t0_pkey | |-• scan
17 |-• scan | estimated row:13
18 estimated row:5 | table: t0@t0_pkey
19 table: t1@t1_pkey |-• scan
20 estimated row:5
21 table: t1@t1_pkey

when estimating the selectivity of OR expression in the ON condition of the INNER JOIN.
The estimated cardinality of the first query with LEFT JOIN should be no less than 60;
after the developers fixed this issue, the estimated cardinality is changed to 60. This
fix improved the performance of the query SELECT * FROM t0 LEFT OUTER JOIN t1 ON

t0.c0<1 OR t0.c0>1 FULL JOIN t2 ON t0.c0=t2.c0 by 20% as shown in Code 3.6. The
improvement was due to a more accurate estimated cardinality, which enabled a
better selection of the join order. Note that we avoided executing the query; CERT
only examines query plans.

We implemented CERT in SQLancer, a popular DBMS testing tool, and evalu-
ated it on three widely used and mature DBMSs, MySQL, TiDB, and CockroachDB.
While MySQL is one of the most popular open-source DBMSs, TiDB and Cock-
roachDB are developed by companies. We reported 14 performance issues to the
developers, who confirmed that 13 of them were unique and 12 were unknown.
Of these unique issues, 2 issues were fixed, 9 other issues were confirmed, and 2
issues required further investigation. Similar to existing work, CERT might report
false alarms, since implementations might not strictly adhere to the cardinality
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restriction monotonicity. However, in practice, none of the issues that we reported
were considered false alarms. Our evaluation demonstrates the high throughput
achieved by eschewing executing queries; our implementation can validate 386×
more queries than AMOEBA in the same time period. We believe that these results
demonstrate that CERT might become a standard technique in DBMS developers’
toolbox, due to its efficiency and effectiveness, and hope that it will inspire future
work on finding performance issues in DBMSs.

Overall, we make the following contributions:

• We present a motivational study to investigate the causes of previous perfor-
mance issues.

• We propose a novel technique, CERT , to test cardinality estimation for find-
ing performance issues in query optimization without measuring execution
time. We show a concrete realization of the technique by proposing 12 query-
restriction rules.

• We implemented CERT in SQLancer and evaluated it on multiple aspects.
CERT found 13 unique issues of cardinality estimation in widely-used DBMSs,
and 11 issues were confirmed or fixed. The source code of CERT is publicly
available, and has been integrated into SQLancer.

3.2 Performance Issue Study
As a motivating study, to investigate if performance issues are caused by incorrect

cardinality estimation in practice, we examined previous performance issues related
to query optimization.

Subjects. We studied the issues reported for MySQL, TiDB, and CockroachDB.
MySQL is the most popular relational DBMS according to a survey in 2021.1 TiDB
and CockroachDB are popular enterprise-class DBMSs, and their open versions on
GitHub are highly popular as they have been starred more than 33k and 26k times.

1https://insights.stackoverflow.com/survey/2021#most-popular-technologies-
database
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Table 3.1: Previous performance issues.

DBMS #ID Caused by Cardinality Estimation

MySQL 61631 ✓
MySQL 56714 ✓
MySQL 25130 X
CockroachDB 93410 X
CockroachDB 71790 X
TiDB 9067 ✓

Sum 6 3

They are widely used and have thus been studied in other DBMS testing works [106,
151, 150].

Methodology. We searched for performance issues using the keywords "slow"
or "suboptimal" in the above-stated DBMSs, aiming to obtain issues that relate to
either slow execution or suboptimal query plans. For MySQL, we chose issues whose
status was closed, the severity was (S5) performance, and the type was MySQL
Server: Optimizer in the bug tracker.2 Considering MySQL was first released in 1995
and some issues are too old to be reproduced, we investigated the issues in version
5.5 or later. For TiDB, we searched its repository3 by the filter is:issue is:closed
linked:pr label:type/bug slow in:title. For CockroachDB, we searched its repository4

by the filter is:issue is:closed linked:pr label:C-bug slow in:title. Then, we manually
analyzed and reproduced each issue to identify whether it was a performance issue
related to query optimization and caused by cardinality estimation. Specifically, if
the estimated cardinality of the query in a report was changed by the fix, we deemed
the performance issue to be caused by incorrect cardinality estimation.

Analysis. Table 3.1 shows the studied performance issues. Overall, we identified
six performance issues in three DBMSs, and three of them were caused by incorrect
cardinality estimation. We attribute the lower number of performance issues to the
difficulty in identifying and resolving performance issues in query optimization. For
issues #61631 and #56714, they produce inefficient query plans which have higher

2https://bugs.mysql.com/
3https://github.com/pingcap/tidb/issues
4https://github.com/cockroachdb/cockroach/issues
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Code 3.2: The performance issue #56714 in MySQL.
1 CREATE TABLE test (a INT PRIMARY KEY AUTO_INCREMENT, b INT NOT NULL, INDEX

(b)) engine=INNODB;
2 CREATE TABLE integers(i INT UNSIGNED NOT NULL);
3 INSERT INTO integers(i) VALUES (0), (1), (2), (3), (4), (5), (6), (7), (8),

(9);
4 INSERT INTO test (b)
5 SELECT units.i MOD 2
6 FROM integers AS units
7 CROSS JOIN integers AS tens
8 CROSS JOIN integers AS hundreds
9 CROSS JOIN integers AS thousands

10 CROSS JOIN integers AS tenthousands
11 CROSS JOIN integers AS hundredthousands;
12
13 EXPLAIN SELECT MAX(a) FROM test WHERE b=0; -- estimated rows: {500360} , {1}

estimated cardinalities than the optimal query plans. Although both issues are not
directly due to the faults in cardinality estimators, they are still observable through
estimated cardinalities, so we deemed both were caused by cardinality estimation.
Issue #9067 was caused by the cardinality estimation due to an issue in calculating
cardinality for correlated columns. The other three issues, which were not caused
by cardinality estimation, were due to inefficient operations. For example, issue
#71790 was due to the inefficient implementation of MERGE JOIN that does not use
the smaller table as the right child, and the estimated cardinality was not changed
after fixing the implementation of the operation.

Case study. Code 3.2 shows issue #56714 in MySQL as an illustrative example of
a performance issue caused by cardinality estimation. According to the issue report,
this performance issue incurs a slowdown of execution time from 0.01 seconds to
3.02 seconds. Column b in table test uses an index, but the query in line 13 does not
correctly use the index incurring a FULL TABLE SCAN, which is slow. Although the root
cause for this performance is in index selection, not in the cardinality estimator, the
suboptimal index selection affects the estimated cardinality as the FULL TABLE SCAN is
expected to scan more rows than the INDEX SCAN.
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Performance issues can arise from inefficient operations, flawed cardinality es-
timators, and inefficient query plans. The latter two causes can be found by
unexpected estimated cardinalities.

3.3 Approach
We propose CERT , a novel technique for testing cardinality estimation. The

core idea is that a given query should not have a lower estimated cardinality than a
more restrictive query derived from it. We term this property cardinality restriction
monotonicity and expect that DBMSs adhere to it in practice. CERT is a simple
black-box technique, making it widely applicable in practice.

Method overview. Figure 3.1 shows an overview of CERT based on the running
example in Code 3.1. Given a randomly generated query at 1⃝, we derive another
more restrictive query at 2⃝ and retrieve both queries’ query plans. Then, if both
query plans are structurally similar at 3⃝, we validate the cardinality restriction
monotonicity property at 4⃝; we expect the less restrictive query 1⃝ to return at
least as high estimated cardinality as the more restrictive query 2⃝. Any discrepancy
is considered a performance issue. We perform the structural similarity checking in
3⃝ based on the observation that a more restrictive query can result in a significantly
different query plan, whose estimated cardinalities are not comparable. Next, we
give a detailed explanation of each step.

3.3.1 Database and Query Generation

We require a database state and a query for testing. Both database state and
query can be manually given or generated. Common generation-based methods
include mutation-based methods [219, 106] and rule-based generation methods [182,
150, 151, 149]. How to generate database states and queries is not a contribution
of this paper, and our approach can be paired with any database state and query
generation method. For example, in Code 3.1, we could randomly generate a
database state in lines 1–4 and a query in line 8.

Before executing queries on the generated database state, we execute ANALYZE

26



CHAPTER 3. CARDINALITY ESTIMATION RESTRICTION TESTING
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Figure 3.1: Overview of CERT .

statements on each table to guarantee that the data statistics are up to date. For
Code 3.1, these statements are executed in lines 5–6.

3.3.2 Query Restriction

Given a query, we derive a more restrictive query based on two insights. First,
for the clauses that we considered, adding a clause to a query makes the query more
restrictive except for the JOIN clause. Second, given an already existing clause, we
can modify the clause or its predicate to obtain a more restrictive query. Specifically,
within a query, we randomly choose an SQL clause. Then, we restrict the chosen
SQL clause followed by predefined rules to make sure the restricted query fetches
no more rows than the original query according to the semantics of queries. For
example, we derive the query in 2⃝ from the query in 1⃝ by replacing the LEFT JOIN

to INNER JOIN. We considered the SQL clauses shown in Code 2.1 and proposed
at least one rule for each feature, yielding the 12 rules shown in Table 3.2. Since

27



CHAPTER 3. CARDINALITY ESTIMATION RESTRICTION TESTING

Table 3.2: The rules to restrict queries.

Clause Source Target

1 JOIN LEFT JOIN INNER JOIN
2 JOIN RIGHT JOIN INNER JOIN
3 JOIN FULL JOIN LEFT JOIN
4 JOIN FULL JOIN RIGHT JOIN
5† JOIN CROSS JOIN FULL JOIN
6 SELECT ALL DISTINCT
7 GROUP BY <Empty> <Predicate>
8 HAVING <Empty> <Predicate>
9 WHERE <Empty> <Predicate>

10 WHERE <Predicate> <Predicate> AND <Predicate>
11 WHERE <Predicate> OR <Predicate> <Predicate>
12 LIMIT <Natural number> <Natural number> - <Natural number>

† Rule 5 holds when both tables are not empty.

the JOIN clause, which specifies two tables or views to be joined, is a major factor
influencing the queries’ run time [100], 5 of the 12 rules relate to them. Our rules
are not exhaustive; we believe that practitioners could propose additional rules
depending on their testing focus.

Rule overview. In Table 3.2, CERT derives a Target statement from a Source
statement by applying a restriction on the shown Clause, as demonstrated through
Example. <Predicate> refers to a boolean expression and <Natural number> to a
natural number. These examples are based on a database state with two tables t0

and t1, both of which have only one column c0. For each test to be generated, we
randomly choose a SQL clause, of which one or more rules are randomly applied to
restrict a query. In Figure 3.1, we choose the JOIN clause and apply only rule 1,
which replaces a LEFT JOIN with a INNER JOIN in the JOIN clause of a query.

JOIN clause. Our key insight for testing the JOIN clause is the partial inequality
relationship in terms of cardinalities between different kinds of joins. For a fixed
join predicate, the following inequalities for the different joins’ cardinalities hold:
INNER JOIN ≤ LEFT JOIN/RIGHT JOIN ≤ FULL JOIN ≤ CROSS JOIN. Figure 3.2 illustrates
this using a JOIN diagram [43] on two tables, each of which has three rows, with
the same color denoting the rows that can be matched in the JOIN predicate. As
determined by the SQL standard, INNER JOIN fetches rows that have matching values
in both tables; LEFT JOIN/RIGHT JOIN fetch all rows from the left/right table and the
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Figure 3.2: The inequality relationships of estimated cardinalities in the JOIN clause
with an example to join two tables.

matching rows from the respectively other table; FULL JOIN fetches all rows from
both tables; CROSS JOIN fetches all possible combinations of all rows from both tables
without an ON clause. A corner case for rule 5 concerning the CROSS JOIN is that this
join may fetch fewer rows than FULL JOIN if either of the tables is empty, in which
case CROSS JOIN fetches zero rows. To avoid potential false alarms, we ensure that
each table contains at least one row.

WHERE clause. For the WHERE clause, our insight is that we can restrict the
predicate that is used for filtering rows. If the query contains an empty WHERE clause,
we restrict the query by adding a random predicate. If the predicate is non-empty but
has an OR operator, we restrict it by removing either of the OR’s operands. Otherwise,
we add an AND operator with a randomly generated predicate. Restricting predicates
would be applicable also to testing JOIN clauses; in this work, we aimed to introduce
the general idea behind CERT and illustrate it on a small set of promising rules.
We believe that practitioners who adopt the approach will propose many additional
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Code 3.3: An example of query plans that are not structurally similar, which is why
we exclude them for testing.
1 CREATE TABLE t0 (c0 INT);
2 CREATE TABLE t1 (c0 INT, c1 INT);
3 INSERT INTO t1 VALUES(1,2), (3,4), (5,6), (NULL, NULL);
4 INSERT INTO t0 VALUES(1), (2);
5 ANALYZE t0;
6 ANALYZE t1;
7
8 EXPLAIN SELECT * FROM t0 FULL JOIN t1 ON t1.c1 IN (t1.c1) WHERE CASE WHEN

t1.rowid > 2 THEN false ELSE t1.c1=1 END; -- estimated rows: 2
9 EXPLAIN SELECT * FROM t0 RIGHT JOIN t1 ON t1.c1 IN (t1.c1) WHERE CASE WHEN

t1.rowid > 2 THEN false ELSE t1.c1=1 END; -- estimated rows: 3
10 -------------------------------------------------------------------------------
11 • filter • cross join(right)
12 | estimated row:2 | estimated row:3
13 |-• cross join(full) |-• scan (t0)
14 | estimated row:6 | estimated row:2
15 |-• scan (t1) |-• filter
16 | estimated row:4 | estimated row:1
17 |-• scan (to) |-• scan (t1)
18 estimated row:2 estimated row:4

rules.

Other SQL clauses. A query can be restricted by a DISTINCT clause, which should
fetch no more rows than the same query without such a clause, or by replacing its
ALL clause. Similarly, a query without GROUP BY or HAVING can be restricted by adding
such clauses along with any predicate. A LIMIT clause can be added, or a lower limit
can be replaced with a higher limit.

3.3.3 Checking for Structural Similarity

Even for similar queries, DBMSs may create significantly different query plans.
In such cases, the estimated cardinalities might be calculated in different ways,
and thus result in false alarms. Code 3.3 shows an example of this problem. The
only difference between the two queries in lines 8–9 is that FULL JOIN is used in the
first query and RIGHT JOIN is used in the second query. The estimated cardinalities
of them are 2 and 3 respectively. Based on rule 4 alone, this discrepancy would
constitute a performance issue; however, consider the query plans in Code 3.3. In
lines 11–18, the left part is the query plan of the first query, and the right part
is that of the second query. For the first query with FULL JOIN, the sequence of
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operations is filter, cross join, scan, scan in which the operation filter is applied
after the operation cross join. For the second query with RIGHT JOIN, the sequence
of operations is cross join, scan, filter, scan, in which the operation filter is
applied before the operation cross join. The difference is due to a SQL optimization
mechanism called predicate pushdown [102], which moves a filter to be executed
before joining two tables and is applied in the second query. The predicate pushdown
does not affect the final result, but can reduce the estimated cardinalities to be
joined in the operation RIGHT JOIN, which is more efficient. However, because the
predicate is pushed down, the structure of the query plans changes. Therefore, the
estimated cardinalities are calculated in a different manner than that of the first
query, and the developers consider the estimated cardinalities of both query plans as
incomparable.5 In Code 3.3, the estimated cardinalities of both operations FULL JOIN

and RIGHT JOIN are calculated as the sum of the estimated cardinalities in the last
step and the operation filter is calculated as one-third of the estimated cardinalities
in the last step. The estimated cardinality of the first query plan is calculated by
(2 + 4)/3 = 2, while that of the second query plan is calculated by 4/3 + 2 = 3.

We identify comparable estimated cardinalities by checking for structural simi-
larity. In a query plan P , the operation of a node N is denoted as ON . Suppose
N has k children, denoted as C1, C2, . . . , Ck, the node’s flattened operation se-
quence is an array obtained by concatenating the flattening of each child node:
flatten(N) = [ON , flatten(C1), flatten(C2) . . . flatten(Ck)]. The flattening of the root
node is also denoted as flatten(P ). For a pair of query plans Pa and Pb, we define
both are structurally similar only if ED(flatten(Pa), flatten(Pb)) <= 1, in which ED
represents the edit distance [124], a common way of quantifying how dissimilar two
strings, of both operation sequences. For example, in the query plans of Figure 3.1,
the sequences of operations are [cross join, scan, scan] and [cross join, filter,

scan, scan]. The first sequence can be edited to the second sequence by inserting a
filter only, and vice versa. Both query plans are structurally similar and we validate
the cardinality restriction monotonicity property. If they are not structurally similar,
we continue testing with a new query. The calculation is based on sequences rather
than trees, because the computation of the edit distance of trees was shown to be

5https://github.com/cockroachdb/cockroach/issues/89060
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NP-hard [170].

3.3.4 Validating Cardinality Estimation

Finally, we validate the cardinality restriction monotonicity property on the
estimated cardinalities extracted from the query plans. If the estimated cardinality
of the original query is lower than that of the more restrictive query, we report
the query pair as an issue. In Figure 3.1, the estimated cardinality of the original
query is 20, which is lower than that of the other restricted query, which is 60. This
indicates an unexpected result, and we report both queries to developers. Recall
that we deem the estimated cardinality in the root operation of the query plan as
the estimated cardinality of the query and ignore the estimated cardinalities of other
operations.

3.4 Evaluation
To evaluate the effectiveness and efficiency of CERT in finding performance issues

through estimated cardinalities, we implemented CERT in SQLancer,6 which is an
automated testing tool for DBMSs, and, based on our prototype SQLancer+CERT ,
we sought to answer the following questions:

Q.1 Effectiveness. Can CERT identify previously unknown issues?

Q.2 Historic Bugs. Can CERT identify historic performance issues?

Q.3 Efficiency. How does CERT compare to the state-of-the-art approach in terms
of accuracy and efficiency?

Q.4 Sensitivity. Which rules proposed in Table 3.2 contribute to finding issues?
Do DBMSs adhere to the cardinality restriction monotonicity property in
practice?

Implementation. We reused the implementation of a rule-based random genera-
tion method of SQLancer to generate queries and database states. For each table,
we generated 100 INSERT statements and ensured that every table contains at least

6https://github.com/sqlancer/sqlancer/releases/tag/v2.0.0
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one row. Then, the generated queries and database states are passed to CERT for
validating the cardinality restriction monotonicity property. The core logic of CERT
is implemented in only around 200 lines of Java code for each DBMS, suggesting
that its low implementation effort might make the approach widely applicable. We
used pattern matching to extract operations and estimated cardinalities, and imple-
mented the Dynamic Programming (DP) algorithm [183] to calculate the structural
similarity.

Tested DBMSs. We tested the same DBMSs, MySQL, TiDB, and CockroachDB
as we studied in Section 3.2. For Q1, Q3, and Q4, we used the latest available
development versions (MySQL: 8.0.31, TiDB: 6.4.0, CockroachDB: 22.2.0). For Q3,
in an attempt of a fairer comparison to AMOEBA, we chose the historical version
of CockroachDB 20.2.19, which is the version that AMOEBA [107] tested.

Baselines. To the best of our knowledge, no existing work can be applied to specif-
ically test cardinality estimation. The most closely related work is AMOEBA, which
finds performance issues in query optimizers. We did not consider APOLLO [89],
because it finds only performance regressions. Ensuring a fair comparison with
AMOEBA is challenging, as the approaches are not directly comparable. AMOEBA
validates that semantic-equivalent queries exhibit similar performance characteristics,
while CERT validates the cardinality restriction monotonicity property. Furthermore,
both tools support a different set of DBMSs; AMOEBA supports CockroachDB and
PostgreSQL, while CERT supports CockroachDB, TiDB, and MySQL. Thus, we
performed the comparison in Q3 using only CockroachDB, which is supported by
both tools.

Experimental infrastructure. We conducted all experiments on a desktop
computer with an Intel(R) Core(TM) i7-9700 processor that has 8 physical cores
clocked at 3.00GHz. Our test machine uses Ubuntu 20.04 with 8 GB of RAM, and
a maximum utilization of 8 cores. We ran all experiments 10 runs for statistical
significance.
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Table 3.3: The unique issues found by CERT .

DBMS Bug ID Version Rules Status
MySQL 108833 8.0.31 9 Verified
MySQL 108851 8.0.31 9 Verified
MySQL 108852 8.0.31 6 Verified
TiDB 38319 51a6684f 11 Confirmed
TiDB 38747 3ef8352a 7 Confirmed
TiDB 38479 3ef8352a 3 & 5 Confirmed
TiDB 38482 3ef8352a 8 Confirmed
TiDB 38665 6c55faf0 2 Confirmed
TiDB 38721 6c55faf0 9 Confirmed
CockroachDB 88455 7cde315d 1 Fixed
CockroachDB 89161 f188d21d 11 Fixed (Known)
CockroachDB 89462 81586f62 8 Backlogged
CockroachDB 90113 fbfb71b9 2 Backlogged

Q.1 Effectiveness

Method. We ran SQLancer+CERT to find performance issues. Each automatically
generated issue report usually includes many SQL statements, making it challenging
for developers to analyze the root reason for the issue. To alleviate this problem
and better demonstrate the underlying reasons for these issues, we adopted delta
debugging [214] to minimize test cases before reporting them to developers. The steps
to minimize the test case are 1) incrementally removing some of the SQL statements
in the test case and 2) ensuring that the cardinality restriction monotonicity property
is still violated. After submitting the issue reports with minimized test cases to
developers, we submitted follow-up issues only if we believed them to be unique, such
as those identified by different rules than previous issues, to avoid duplicate issues.
MySQL has its own issue-tracking system, and developers add a label Verified for
the issues that they have confirmed. TiDB and CockroachDB use GitHub’s issue
tracker. TiDB’s developers assign labels, such as affected versions and modules; we
considered the issue as Confirmed after such a label was assigned. CockroachDB’s
developers typically directly replied whether they planned on fixing the issue which
we consider Fixed or whether the issue was considered a false alarm. In some cases,
they added a Backlogged label to indicate that they would investigate this issue in
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Code 3.4: Rule 6, which identified this issue in MySQL, replaces ALL with DIS-
TINCT.
1 CREATE TABLE t0(c0 INT, c1 INT UNIQUE) ;
2 INSERT INTO t0 VALUES(-1, NULL),(1, 2),(NULL, NULL),(3, 4);
3 ANALYZE TABLE t0 UPDATE HISTOGRAM ON c0, c1;
4
5 EXPLAIN SELECT ALL t0.c0 FROM t0 WHERE t0.c1; -- estimated rows: 3
6 EXPLAIN SELECT DISTINCT t0.c0 FROM t0 WHERE t0.c1; -- estimated rows: 4

the future. For all DBMSs, based on historic reports, we observed that, typically,
developers directly reject duplicate issue reports.

Results. Table 3.3 shows the unique issues that CERT found in three tested
DBMSs. The Bug ID column shows the bug id in respective bug trackers. The
Version column shows the versions or git commits of the DBMSs in which we found
corresponding issues. The Rules column shows which rules identified this issue. In
total, we have found 13 unique performance issues, 9 issues have been confirmed
by developers in three days, 2 issues have been fixed in one week, 2 issues were
backlogged, and 1 issue was duplicated. No false alarm was generated. We speculate
that many confirmed bugs remain unfixed, because 1) fixing performance issues
requires comprehensive consideration which usually consumes much time, and 2)
performance issues might have lower priority than other issues, such as correctness
bugs, which cause a query to compute an incorrect result. Among all 13 unique
issues, the only known issue that we found in CockroachDB had been backlogged for
around 10 months since it was first found, and our test case clearly demonstrated
the root reason for the issue, which allowed developers to quickly fix it. Apart from
the reported issues, CERT continuously generates more than ten issue reports per
minute. We did not report the additional bug-inducing test cases to the developers
to avoid burdening them, because deciding their uniqueness would be challenging.
Therefore, we believe that CERT could help identify additional performance issues
in the future. Overall, all issues were exposed in various SQL clauses and predicates,
which may imply no common issues across tested DBMSs. We give two examples of
minimized test cases to explain the issues we found as follows.

An issue identified by rule 6. Code 3.4 shows a test case exposing a performance
issue in MySQL. Rule 6, which replaces ALL with DISTINCT in Table 3.2, exposed this
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Code 3.5: Rule 11, which identified this issue in CockroachDB, removes either
operand of an OR expression.
1 CREATE TABLE t0 (c0 INT);
2 INSERT INTO t0 VALUES (1), (2), (3), (4), (5), (6), (7), (8), (9), (10);
3 ANALYZE t0;
4
5 EXPLAIN SELECT t0.c0 FROM t0 WHERE

(t0.c0 IS NOT NULL) OR (1 < ALL (t0.c0, t0.c0)); -- estimated rows: 3
6 EXPLAIN SELECT t0.c0 FROM t0 WHERE (t0.c0 IS NOT NULL); -- estimated rows: 10

issue. In Code 3.4, the first query in line 5 fetches the rows including duplicate
rows, while the second query in line 6 excludes duplicate rows, so the cardinality
of the second query should be no more than that of the first query. However, the
estimated cardinality of the second query is greater than that of the first query,
which is unexpected. Suppose a query q with ALL is a subquery of another query
Q with DISTINCT, this issue affects whether DISTINCT should be pushed down to the
execution of q for an efficient query plan that aims to retrieve fewest rows from
q. This issue was confirmed by the MySQL developers only three hours after we
reported it.

An issue identified by rule 11. Code 3.5 shows another test case exposing
another performance issue in CockroachDB by rule 11, which removes either operand
of an OR expression. The predicate (t0.c0 IS NOT NULL) in the WHERE clause of the
second query should fetch no more rows than the predicate (t0.c0 IS NOT NULL)OR

(1 < ALL (t0.c0, t0.c0)) of the first query. However, the estimated cardinality of
the second query is greater than that of the first query, which is unexpected. This
issue was caused by a buggy logic to handle the OR clause. In CockroachDB, given
predicates A and B, the estimated cardinality of predicate A OR B is calculated by:
P (AORB) = P (A) +P (B) −P (AANDB). However, when A and B depend on the
same table or column, the estimated cardinality is unexpected. We found this issue
by rule 11 in Table 3.2. Although this issue was known, it had been backlogged
for around 10 months since it was first found. When we reported our test case, the
developer opened a pull request in their git repository to fix it after three days.

Performance analysis. To investigate the extent to which the issues we found
affect performance, we evaluated the query performance of the fixed issues 10 and 11
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Code 3.6: The performance improvement by fixing our found issues.
1 CREATE TABLE t0 (c0 INT);
2 CREATE TABLE t1 (c0 INT);
3 CREATE TABLE t2 (c0 INT);
4 INSERT INTO t0 SELECT * FROM generate_series(1,1000);
5 INSERT INTO t1 SELECT * FROM generate_series(1001,2000);
6 INSERT INTO t2 SELECT * FROM generate_series(1,333100);
7 ANALYZE t0;
8 ANALYZE t1;
9 ANALYZE t2;

10
11 SELECT COUNT(*) FROM t0 LEFT OUTER JOIN t1 ON t0.c0<1 OR t0.c0>1 FULL JOIN t2

ON t0.c0=t2.c0; -- 399ms → 321ms
12 SELECT COUNT(*) FROM t0 LEFT JOIN t1 ON t0.c0>0 WHERE (t0.c0 IS NOT NULL) OR

(1 < ALL(t0.c0, t0.c0)); -- 131ms → 109ms

on a test case as shown in Code 3.6 that involves joining multiple tables. We could
not consider unfixed issues, as it would be unclear how to determine the potential
speedup. We executed both queries in lines 12 and 13 before and after the fixes
of issues 10 and 11 respectively. After executing either query ten times, we found
that the fixes improve the performance by an average of 20% and 17%, respectively.
This improvement is due to the more accurate estimated cardinality which allows
for more optimal joining orders.

Using CERT , we have found 13 unique issues in MySQL, TiDB, and CockroachDB.
The fixes improve query performance by 19% on average.

Q.2 Historic Bugs

Method. To evaluate whether cardinality restriction monotonicity is sufficiently
general to identify previous performance issues that we identified in Table 3.1, we
attempted using CERT to identify all three performance issues whose fixes changed
the estimated cardinalities, namely issues #61631, #56714, and #9067. Specifically,
based on the queries in the issue reports, we followed the step 2⃝ in Figure 3.1 to
randomly construct 10,000 pairs of queries. Then, we checked whether any pair
violated the cardinality restriction monotonicity before the fix, and adhered to the
cardinality restriction monotonicity after the fix. If so and both query plans are
structurally similar, we concluded that cardinality restriction monotonicity could
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Code 3.7: Issue #56714 violates the cardinality restriction monotonicity.
1 ...
2 EXPLAIN SELECT MAX(a) FROM test; -- estimated rows: 1
3 EXPLAIN SELECT MAX(a) FROM test WHERE b=0; -- estimated rows: 500190

have identified the performance issue.

Results. All three previous performance issues caused by cardinality estimation
can be found by CERT . For example, considering the performance issue #56714 in
Code 3.2, Code 3.7 shows the pair of queries that CERT produces to identify the
performance issue. The second query has an additional WHERE clause compared to
the first query, so the estimated cardinality of the second query should be no more
than that of the first query. However, due to incorrect usage of the index in column
b, the second query scans all rows and has a higher estimated cardinality. After the
fix, the estimated cardinality of the second query decreases to 1.

The cardinality restriction monotonicity can identify historical performance issues
caused by cardinality estimation.

Q.3 Efficiency

Accuracy. We evaluated whether CERT has higher accuracy in confirmed issues
than AMOEBA. We evaluated this aspect based on the observation that around five
in six reported bugs by AMOEBA were false alarms. A high rate of false alarms
significantly limits the applicability of an automated testing technique. Recall that
it is challenging to make a fair comparison as CERT and AMOEBA find different
kinds of issues affecting performance.

Results. Table 3.4 shows the number of all and confirmed/fixed unique perfor-
mance issues found by CERT and AMOEBA. The authors of AMOEBA reported
25 issues in CockroachDB, but only 6 issued (24% accuracy) were confirmed or
fixed by developers. In comparison, for CERT , 50% of issues in CockroachDB and
100% of issues in MySQL and TiDB were confirmed or fixed. For CockroachDB,
CERT found fewer performance issues than AMOEBA, because we did not report
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Table 3.4: The number of all (All) and confirmed or fixed (C/F) unique performance
issues.

CERT AMOEBA
DBMS All C/F % All C/F %
MySQL 3 3 100% - - -
TiDB 6 6 100% - - -
CockroachDB 4 2 50% 25 6 24%
Sum: 13 11 85% 25 6 24%

all found issues to avoid duplicate reports. Overall, these results suggest that CERT
has high accuracy and is a practical technique for finding relevant performance
issues. Despite these promising results, on a conceptual level, similar to AMOEBA,
we cannot ensure that the performance issues would be considered as such by the
developers.

Throughput. We evaluated whether CERT has a higher testing throughput
than AMOEBA. State-of-the-art benchmarks and approaches, such as TPC-H [123],
AMOEBA [107], and APOLLO [89] execute queries, which results in relatively
low throughput. Therefore, it is expected that CERT validates more queries per
second. To evaluate this, we determined the average number of test cases per second
processed by SQLancer+CERT and AMOEBA in one hour.

Results. In CockroachDB, on average across 10 runs and one hour, CERT validates
714.54 test cases while AMOEBA exercises 1.85 test cases per second. This suggests
a 386× performance improvement over AMOEBA. Recall that the throughput results
are not directly comparable, as different approaches can find different kinds of issues.
In addition, CERT is immune to performance fluctuation, because the estimated
cardinalities are not affected by execution time. Therefore, CERT yields the same
results in different hardware and network environments.

SQLancer+CERT validates 386× more test cases than AMOEBA across one hour
and 10 runs on average, and is more than twice as accurate as AMOEBA.
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Table 3.5: The average number of all queries (Queries), the queries that violate
cardinality restriction monotonicity (Violations), and the geometric mean of per-
centage (%) of queries that violate the property across 10 runs and one hour.

DBMS Queries (#) Violations (#) Violations (%)
MySQL 6,371,222 30,841 0.28%
TiDB 2,895,203 8,108 0.27%
CockroachDB 1,306,807 661 0.05%

Average: 0.2%

Q.4 Sensitivity

Sensitivity of rules. We evaluated which rules presented in Table 3.2 contribute
to finding the issues in Table 3.3. Specifically, we recorded which rules were applied to
the bug-inducing test cases that we reported. We considered reported bug-inducing
test cases, rather than all test cases—recall that SQLancer+CERT still reports
violations when being run—as we expect the reported issues to be unique based
on the developers’ verdicts. Table 3.3 shows the rules applied to the corresponding
bug-inducing test cases. Overall, 9 out of 12 rules have found at least one issue.
Rule 9, which adds a predicate to WHERE clause, found the most issues, namely three.
We believe that this is because the predicates in WHERE clause can vary significantly
and thus be diverse and have a higher possibility to expose issues. No issue was
found by rules 4, 10, and 12. Rule 4 applies to the JOIN clause in which other rules
found several issues. Similarly, we believe that rule 10, which restricts a WHERE clause
by an AND operator would find issues after the issues found by other rules applied
to WHERE clause are fixed. Rule 12 applies to the LIMIT clause, which simply returns
up to as many rows as specified in its argument. We explain that the simplicity of
LIMIT explains that we have found no issues in its handling.

Sensitivity of cardinality restriction monotonicity. We expect that any
violation of the cardinality restriction monotonicity property indicates a potential
issue. To more thoroughly assess our hypothesis, we examined how many queries
among all tested queries violate the cardinality restriction monotonicity property.
If only a small portion of queries violates it, DBMSs are likely to adhere to the
cardinality restriction monotonicity property, and any violation warrants further
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investigation. Otherwise, the property may be not meaningful for developers.
Table 3.5 shows the average number of all queries, the queries that violate cardinality
restriction monotonicity property, and the geometric mean of the percentage of
queries that violate the property across 10 runs and one hour. Overall, 0.2% of all
generated queries violate the cardinality restriction monotonicity property. All three
DBMSs, MySQL, TiDB, and CockroachDB, exhibit a similar rate of cardinality
restriction monotonicity violations. The results demonstrate that DBMSs typically
comply with the cardinality restriction monotonicity property, as more than 99.5%
of generated queries do not violate it.

3.5 Discussion
We discuss some key considerations on the design of CERT , its characteristics,

as well as the evaluation’s results.

Evaluating performance gains. It is challenging to measure the overall perfor-
mance gain that fixing the issues reported by CERT could achieve in practice. One
issue is that measuring the overall performance impact might be misleading, because
many other components in query optimizers can affect performance as well. For
example, research on the Join Order Benchmark [100] demonstrated that a worse
cardinality estimator might lead to better performance due to the issues in other
components. In addition, 9 issues were confirmed, but remained unfixed. Since we
lack domain knowledge to address the underlying issues, we cannot determine the
performance gains that fixing these issues would cause.

Generality. The cardinality restriction monotonicity property might be applicable
also to other kinds of data models than the traditional relational data model. For
example, Neo4J, a graph DBMS, also uses a concept similar to query plans—termed
execution plans—and cardinality estimation7 (EstimatedRows field in execution
plans). Its query optimization also depends on cardinality estimation, which we
expect to comply with the cardinality restriction monotonicity property. More work

7https://neo4j.com/docs/cypher-manual/current/execution-plans/#execution-plan-
introduction
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is required to further explore cardinality restriction monotonicity in other DBMSs
in the future.

Threats to Validity. Our evaluation results face potential threats to validity.
One concern is internal validity, that is, the degree to which our results minimize sys-
tematic error. CERT validates test cases that are randomly generated by SQLancer.
The randomness process may limit the reproducibility of our results. To mitigate the
risk, we repeated all experiments 10 times to gain statistical significance. Another
concern is external validity, that is, the degree to which our results can be general-
ized to and across other DBMSs. We selected various types of DBMSs including
different purposes (community-developed: MySQL and company-backed: TiDB and
CockroachDB) and languages (C/C++: MySQL and Go: TiDB and CockroachDB).
These DBMSs have been widely used in prior research [106, 151, 150]. Given that
DBMSs provide similar functionality and features, we are confident that our results
generalize to many DBMSs. The last concern is construct validity, that is, the degree
to which our evaluation accurately assesses what the results are supposed to. CERT
found 13 unique performance issues, but only 2 issues had been fixed posing the
threat that developers might not fix them in the future or might deem them less
important. To address this threat, we communicated with the TiDB developers,
who informed us that they plan to fix the issues and indicated an interest in using
SQLancer+CERT .

3.6 Conclusion
This chapter presents CERT , a novel technique for finding performance issues

through the lens of cardinality estimation in DBMSs. The key idea is to, given
a query, derive a more restrictive query and validate that the DBMSs’ estimated
cardinalities that the original query has at least as great estimated cardinality
as the more restrictive query; we refer to this property as cardinality restriction
monotonicity. The evaluation has demonstrated that this technique is effective. Of
the 13 unique issues that we found, 2 issues were fixed, 9 issues were confirmed,
and 2 issues require further investigation. The fixes improved query performance
by 19% on average. Unlike other testing approaches for performance issues, CERT
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avoids executing queries, achieving a speedup of 386× compared to the state of
the art. Finally, it is readily applicable. DBMSs expose estimated cardinalities
as part of query plans to users; thus, CERT is a black-box technique that is
applicable without modifications, even if the DBMSs’ source code is inaccessible
to the testers. Furthermore, since no queries are executed, CERT is resistant to
performance fluctuations. Overall, we believe that CERT is a useful technique for
DBMS developers and testers and hope that the technique will be widely adopted
in practice.
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Chapter 4

Differential Query Plans

To find logic bugs, in this chapter, we propose Differential Query Plans (DQP), a
simple alternative to a state-of-the-art test oracle TQS. This work has been published
in the 2024 ACM SIGMOD/PODS International Conference on Management of
Data [87].

4.1 Introduction
A key feature of relational Database Management Systems (DBMSs) is to join

the data in multiple tables using a JOIN. Various strategies and optimizations have
been proposed specifically to optimize the execution of joins [127, 47, 46]. Given
the complexity of such optimizations, query optimizers might apply a semantically
incorrect optimization, which could result in logic bugs. In Code 4.1, the second
query at line 8 triggers a logic bug in the DBMS, as it should return a non-zero
result, instead of zero.

Recently, automated testing approaches for DBMSs have gained broad adoption
to find logic bugs [106, 151, 149, 150], as they can often find many bugs that have
been overlooked by manually written tests, which are costly to write. Importantly,
such approaches provide so-called test oracles, mechanisms to check whether the
computed result by the DBMS is correct. Test oracles are typically either combined
with semi-random database and query generators [85, 182], or existing benchmarks
such as TPC-H [123] or TPC-DS [177]. TQS [167] is an automated testing approach
for detecting logic bugs in query optimizations. Notably, it is the state-of-the-art
approach for testing join optimizations. To tackle the test-oracle problem, it simulates
joins to derive a query’s ground-truth results, and the simulation is performed by
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Code 4.1: A bug found that may incur money loss by Differential Query Plans
(DQP) in MySQL.
1 CREATE TABLE user(user_id DECIMAL PRIMARY KEY);
2 CREATE TABLE transaction(transitition_id TEXT, amount DECIMAL(10,2) NOT NULL);
3 CREATE INDEX i0 ON transaction(transitition_id(5));
4 INSERT INTO user VALUES(1), (2);
5 INSERT INTO transaction VALUES(’1_c12934’, 100000), (’1_e3b664’, -10);
6
7 SELECT IFNULL(SUM(amount), 0) AS balance FROM user JOIN transaction ON

transaction.transitition_id = user.user_id; -- 99990.00
8 SELECT /*+ JOIN_ORDER(transaction, user)*/ IFNULL(SUM(amount), 0) as balance

FROM user JOIN transaction ON transaction.transitition_id = user.user_id;

-- 0.00
9 -------------------------------------------------------------------------------

10 nested_loop nested_loop
11 +- table +- table
12 | table_name: user | table_name: transaction
13 | access_type: index | access_type: all
14 +- table +- table
15 | table_name: transaction | table_name: user
16 | access_type: all | access_type: eq_ref

table splitting. Specifically, it validates the correctness of join optimizations by
splitting a given table into several sub-tables, and deriving ground-truth results
of a query that joins these sub-tables by retrieving the given table. To generate
more diverse test cases for finding more bugs, TQS randomly injects noise, such
as NULL and 0, to these sub-tables and models database schemas as a graph data
model to evaluate the similarity of JOINs. 115 bugs were found by this approach as
claimed in the TQS paper. However, TQS suffers from two major challenges. First,
this method is complex to understand and implement. TQS requires splitting and
maintaining the data schemas with reference to a given table and modeling data
schemas into graphs to decide whether two graphs are isomorphic for evaluating the
similarity of queries. Second, the testing scope is small. TQS can apply only to
equijoins. Although, as claimed in the TQS paper, this method could conceptually
be extended to non-equijoins, this method cannot test other SQL features, which
are directly executed to obtain results in TQS.

To understand the bug-finding effectiveness of TQS, we studied the bug reports
of TQS in the public issue trackers. We identified 15 unique bugs, of which 14 were
reported in the manner that the different results of executing the same query with
different query hints. This manner is similar to Code 4.1, meaning that deriving the
ground-truth results is not necessary for finding these bugs.
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Based on our observation, in this chapter, we propose a simple and easy-to-
understand approach to achieve the same level of bug-finding effectiveness as TQS.
We propose checking the result consistency of executing different query plans of
the same query, and refer to this method as Differential Query Plan (DQP). More
formally, given a database D and a query Q, the DBMS executes Q on D by the
query plan P to obtain the result Q(P,D). For another possible query plan P ′ of Q,
if Q(P,D) ̸= Q(P ′, D), it indicates a bug.

To realize this technique as a black-box approach that eschews modifications
to the DBMSs, we propose using query hints and setting system variables that are
already provided by the DBMSs to affect the generated query plans. We believe
that this technique is obvious and simple, but addresses both challenges of TQS and
has a similar bug-finding effectiveness as TQS. Moreover, DQP can test more query
optimizations rather than only join optimizations, as query hints and system variables
can affect the optimizations of other SQL features. Importantly, the approach is
simple and straightforward to implement, as DQP does not need to maintain data
structures, such as graphs and sub-tables, for deriving the ground-truth results.

Code 4.1, which we briefly introduced above, shows a motivating example of a
bug found by DQP in MySQL. Suppose we are in a bank scenario in which MySQL
stores the user information in the table user and transaction records in the table
transaction. Lines 1–3 create both tables with an index, and lines 4–5 insert data
into both tables. The data in column transaction_id is composed of a user ID and a
randomly generated transaction ID, such as 1_c12934 represents the user 1 making a
transaction whose ID is c12934. Line 7 checks the balance of user 1 and obtains the
expected result, 9990.00. If the query results in an inefficient query plan, a database
administrator might decide to enforce another query plan by adding a query hint as
shown in line 8. The hint /*+ JOIN_ORDER(transaction, user)*/ instructs the DBMS
to process table transaction before user when performing the join. However, this
query returns a wrong result 0.00. Both query plans are shown in lines 10–16. This
bug may incur severe consequences, as all money of user 1 is lost.

We implemented DQP in less than 100 lines of Java code for each DBMS based
on SQLancer [150], a widely used DBMS testing framework. SQLancer provides
generators for databases and queries that we reused. We evaluated DQP on the
three DBMSs as in the TQS paper, MySQL, MariaDB, and TiDB. The results show
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that DQP can reproduce 14 out of the 15 unique bugs found by TQS, and all 10
bugs related to join optimizations. In the same systems extensively tested by TQS,
DQP found 26 previously unknown unique bugs, and 21 of them are logic bugs.
Within these logic bugs, 15 are related to join optimizations suggesting that these
bugs were overlooked by TQS, and 6 are related to other query optimizations that
can not be found by TQS. Compared with TQS, DQP is simple yet general, and
efficient.

Overall, we make the following contributions:

• We studied the bug-finding efficiency of a state-of-the-art work TQS for finding
logic bugs in join optimizations;

• We demonstrated that the simple and easy-to-understand testing approach
Differential Query Plans (DQP) testing shows the same level of bug-finding
effectiveness as the more complex approach TQS;

• We implemented and evaluated the approach, which has found 26 unique,
previously unknown bugs in widely-used DBMSs.

4.2 TQS Study
TQS successfully found bugs in MySQL, MariaDB, TiDB, and PolarDB. However,

it is a complex method that requires implementing multiple graphs and tables as
internal components for deriving the ground-truth results. In this section, we study
TQS to understand whether these bugs found by TQS can be found by a simpler
method by answering the following questions:

RQ.1 Join-related Bugs. How many bugs reported by TQS are related to join
optimizations? TQS aims to find bugs in join optimizations, so we study how
many found bugs are related to them.

RQ.2 Bug-reporting Manners. How were the bugs reported by TQS? Convinc-
ing developers that their DBMS, and not TQS, is computing an incorrect
result might be challenging. As detailed in our answer to this question, we
found that the bugs were explained not based on their ground-truth results,
which motivates our simpler testing approach.
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4.2.1 TQS Summary

Transformed Query Synthesis (TQS) [167] was proposed as an approach to detect
logic bugs of join optimizations in DBMSs. TQS includes two major components:
Data-guided Schema and query Generation (DSG) and Knowledge-guided Query
space Exploration (KQE). TQS requires a wide table as an input table. The input
table can be manually given, and in the TQS paper, the authors used the TPC-H1

and KDD Competition2 databases. First, DSG splits the wide table into multiple
sub-tables through database normalization, which is an established technique that
minimizes data redundancy and dependency by organizing data into separate tables.
Then, DSG randomly constructs a query to join these sub-tables. The ground-truth
results are derived by retrieving the wide table. The derivation process is not easy
to implement as maintaining the relations between the given wide table and the split
tables is necessary and complex. To make the generated queries more diverse, KQE
evaluates whether a randomly generated query is similar to a previous query, and
will adjust the random generation process to reduce the possibility of generating
similar queries. The similarity is evaluated by modeling database schemas into
an embedding-based graph, in which each query is a sub-graph, and KQE checks
whether two sub-graphs are isomorphism. The authors claimed that TQS found 115
bugs within 24 hours including 7, 5, 5, and 3 types of bugs in MySQL, MariaDB,
TiDB, and PolarDB.

4.2.2 Study Scope

We chose the public bug list from TQS3 as our studied target. The public bug
list is the only source that we could obtain to study TQS except for its paper. We
did not involve the source code of TQS, because the source code is unavailable and
the authors answered in emails that they were currently not able to provide it to us.
We explain our attempts to obtain the source code in Section 4.6.

1https://www.tpc.org/tpch/
2https://archive.ics.uci.edu/dataset/129/kdd+cup+1998+data
3https://github.com/xiutangzju/tqs/blob/d5f8f5/index.md
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Table 4.1: The bugs reported by TQS.

DBMS Bug Type ID Unique Join Query Plan
MySQL 106713 3 ✓ ✓
MySQL 106715 4 ✓ ✓ ✓
MySQL 106716 7 ✓ ✓ ✓
MySQL 106717 5 ✓ ✓
MySQL 106718 2 ✓ ✓
MySQL 106611 6 ✓
MySQL 106710 1 ✓ ✓
MySQL 99273 ✓
MySQL 109211 ✓ ✓ ✓
MySQL 109212 ✓ ✓ ✓
MariaDB 28214 8 ✓ ✓ ✓
MariaDB 28215 9 ✓ ✓ ✓
MariaDB 28216 10 ✓ ✓ ✓
MariaDB 28217 11 ✓ ✓ ✓
MariaDB 29695 12 ✓ ✓ ✓
TiDB 33039 13 ✓ ✓
TiDB 33041 14 ✓ ✓
TiDB 33042 15 ✓ ✓ ✓
TiDB 33045 16 ✓ ✓
TiDB 33046 17 ✓ ✓

4.2.3 Data Preprocessing

Target DBMSs. We studied the bug reports of MySQL, MariaDB, and TiDB.
TQS was originally evaluated on four DBMSs: MySQL, MariaDB, TiDB, and
PolarDB, but we observed that the public bug list does not include the bug reports
of PolarDB. As a result, we studied the bug reports of the first three DBMSs, in
which the authors claimed that TQS found 92 bugs of 17 bug types. While the paper
claims that all found bugs had been reported, the actual number of bug reports in
the public bug list is 21, namely 11 bug reports in MySQL, 5 in MariaDB, and 5 in
TiDB.

To avoid that we missed any bug reports, as the list of found bugs provided by the
TQS authors could be incomplete, we further searched the submission history of the
first author in the corresponding issue trackers. We did not search for other authors
as we could not find other authors’ accounts in these issue trackers. Specifically,
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we searched the issue trackers of MySQL,4 MariaDB,5 and TiDB.6 We failed to
identify other bug reports. We show all bug reports in Table 4.1, in which we
excluded bug #106473, because the developers of MySQL rejected the bug report.7

We also observed that bugs #106611, #106710, and #99273 were reported by a
non-author, which is mentioned in the acknowledgment of the TQS paper. Based
on our observation and investigation, we infer that the 92 bugs in the paper refer
to bug-inducing test cases, a large portion of which is duplicate, instead of unique,
valid bugs.

Bugs in the TQS paper. To validate our assumption that 92 bugs in the TQS
paper refer to bug-inducing test cases, we did a matching analysis to examine the
correlation between the public bug list and the 17 bug types from Table 4 in the
TQS paper. Specifically, for a bug in the public bug list, we searched for a matching
bug type with the same bug status, bug severity, and similar description described
in the TQS paper. We observed that the titles of bug reports are similar to the
descriptions of bug types, but not exactly the same, so we adopted the algorithm
gestalt pattern matching [144] to calculate whether two strings are similar, and the
similarity is indicated as a floating number ranging from 0 to 1 indicating the degree
of similarity. We deemed the highest score as the closest match. After matching, we
further manually examined and corrected the matching according to the semantic
information of bug reports. Specifically, we matched bug #28217 and bug type
11 as they have similar descriptions—incorrect results by limiting join buffers but
different severity levels, although they have different bug severity. We also matched
bug #33042 and bug type 15 as they have the same keyword "empty resultset".

In Table 4.1, the column Type ID shows our matching results. 17 bug reports
can be matched to the 17 bug types in the TQS paper, and 3 bug reports have no
matching bug types. This result shows that each bug report in the public bug list
refers to a bug type in the TQS paper, rather than indicating a bug. Three bug
reports have no matched bug types, and a possible explanation is that they were

4https://bugs.mysql.com/search.php?cmd=display&status=All&severity=all&
reporter=16399198

5https://jira.mariadb.org/browse/MDEV-29695?jql=reporter="XiuTang"
6https://github.com/pingcap/tidb/issues?q=is:issue+author:xiutangzju
7https://bugs.mysql.com/bug.php?id=106473
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submitted after submitting the TQS paper.

Unique bugs. Given the 20 bug reports, we investigated the uniqueness of these
bugs according to the developers’ responses. Typically, developers clearly respond
to a bug report if it duplicates a previously reported bug. We carefully reviewed all
developers’ responses in the bug reports to check whether a bug is a duplicate.

In Table 4.1, the column Unique shows the unique bugs. 15 of the 20 bugs
are unique. For MySQL, bug #106611 is a duplicate of the previously found
bug #105773, and the developers confirmed this duplication within 24 hours after
submitting the bug report. For TiDB, bugs #33049, #33041, #33045, #33046
are duplicates of bug #33042 reported by TQS as well, and these duplicates were
confirmed by developers within 3 days after submitting the bug reports. We further
study TQS based on the 15 unique bugs.

RQ.1 Join-related Bugs

We evaluated how many bugs are related to join optimizations. TQS aims
to detect logic bugs in join optimizations, DSG derives ground-truth results of
a join, and KQE drives the test case generation towards exercising diverse join
optimizations. Therefore, it is important to determine how many bugs are related
to join optimizations. We examined the test cases in the bug reports and checked
whether a test case includes at least one JOIN clause. If so, we deemed the bug report
to be related to join optimizations. Although join optimizations might also apply to
other clauses, such as subqueries [45], DSG cannot derive the ground-truth results
for these clauses,8 so we considered only queries with JOIN clauses as join-related
queries for this study.

In Table 4.1, the column Join shows the bug reports whose test case includes
at least one JOIN clause. In total, 10 of 15 unique bugs (67%), are related to join
optimizations. For the five bugs that are not related to join optimizations, #106713,
#106717, #106718, #106710, #99273, a common feature is that the bug-inducing
test cases of them include at least one SUBQUERY clause. The core components of TQS
show no obvious contribution to the finding of these non-join-related bugs. It is

8In Section 3.3 of TQS paper, the authors claimed: “DSG randomly generates other expressions
based on the join clauses.”
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Code 4.2: MySQL bug #106713 found by TQS.
1 CREATE TABLE IF NOT EXISTS t0(c0 DECIMAL ZEROFILL COLUMN_FORMAT DEFAULT );
2 INSERT HIGH_PRIORITY INTO t0(c0) VALUES(NULL), (2000-09-06), (NULL);
3 INSERT INTO t0(c0) VALUES(NULL);
4 INSERT DELAYED INTO t0(c0) VALUES(2016-02-18);
5
6 SELECT t0.c0 FROM t0 WHERE t0.c0 IN (SELECT t0.c0 FROM t0 WHERE (t0.c0 NOT IN

(SELECT t0.c0 FROM t0 WHERE t0.c0 )) = (t0.c0) ); --
{0000001985},{0000001996}

7 SELECT t0.c0 FROM t0 WHERE t0.c0 IN (SELECT /*+ no_semijoin()*/ t0.c0 FROM t0
WHERE (t0.c0 NOT IN (SELECT t0.c0 FROM t0 WHERE t0.c0 )) = (t0.c0) ); --
empty set

Code 4.3: MySQL bug #99273 found by TQS.
1 CREATE TABLE t1 (a INT, b INT);
2 INSERT INTO t1 VALUES (1,1),(2,1),(3,2),(4,2),(5,3),(6,3);
3 SET SQL_MODE = ’ONLY_FULL_GROUP_BY’;
4 SELECT a FROM t1 as t1 GROUP BY a HAVING (SELECT t1.a FROM t1 AS t2 GROUP BY b

LIMIT 1); -- {1},{2},{3},{4},{5},{6}
5 INSERT INTO t1 values (null, 4);
6 SELECT a FROM t1 as t1 GROUP BY a HAVING (SELECT t1.a FROM t1 AS t2 GROUP BY b

LIMIT 1); -- empty set

unclear how TQS constructs the ground-truth results for these cases, because TQS
directly executes non-join SQL clauses to obtain the results.9

RQ.2 Bug-reporting Manners

We examined the bug descriptions and test cases of these bug reports to study
how these bugs were reported and explained. We observed that all 10 join-related
bugs and 14 of 15 unique bugs were reported in the same manner, by demonstrating
that different query plans of the same query compute inconsistent results. Code 4.2
shows an example of bug #106713 in MySQL. The author argued the buggy behavior
by showing that a query with the query hint /*+ no_semijoin()*/ returns a different
result than the same query, but without the query hint. A query hint suggests the
DBMS to generate or avoid a specific query plan, and no_semijoin() disables the
semijoin during query optimization. The only exception is bug #99273, as shown in
Code 4.3. This bug is included in the public bug list, but can not be matched to any
bug type in the TQS paper. This bug was explained by the unexpected behavior
that a query returns fewer rows after inserting a row with NULL. The root reason

9In Section 3.4 of TQS paper, the authors claimed: “DSG also executes the generated filters
and projections defined in the AST”.

52

https://bugs.mysql.com/bug.php?id=106713
https://bugs.mysql.com/bug.php?id=99273


CHAPTER 4. DIFFERENTIAL QUERY PLANS

 SELECT 
IFNULL(SUM(amount), 0) AS balance 
FROM user JOIN transaction
ON transaction.transaction_id = 
user.user_id;

 SELECT 
/*+ JOIN_ORDER(transaction, user)*/ 
IFNULL(SUM(amount), 0) as balance 
FROM user JOIN transaction
ON transaction.transaction_id = 
user.user_id;
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Figure 4.1: Overview of DQP.

is an incorrect optimization for SUBQUERY, but is not related to JOIN. It is unclear
how TQS derives the ground-truth result for a SUBQUERY, as TQS can only derive the
results of JOIN. We also noticed that this bug was found in 2020, while all other
bugs were found in 2022. Based on our observations, we assume that most of these
bugs can also be found by checking inconsistencies in executing the same query with
different query plans, which is a much simpler testing method than TQS.

14 of the 15 unique TQS bugs and all 10 JOIN-related bugs were reported by
showing discrepancies across the executions of different query plans of the same
query.

4.3 Approach
We propose a simple approach, which we term Differential Query Plans (DQP)

testing, to find bugs in join optimizations. Our core idea is to find bugs by comparing
the results of the same query while enforcing different query plans for it. Compared
to TQS, DQP does not require implementing graph and table structures for deriving
ground-truth results. Moreover, DQP supports finding bugs in a variety of query
optimizations instead of only in equijoin optimizations. Our key contribution is not
the novelty of the approach, but the insight that a simple and easy-to-understand
technique performs at the same level as a more sophisticated approach.
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Approach overview. Figure 4.1 shows an overview of DQP illustrated based on
Code 4.1. First, DQP generates a database state D in step 1⃝. Then, in step 2⃝,
DQP generates a query Q, and enforces different query plans P and P ′ to execute it.
In step 3⃝, DQP obtains the results of the executions. A discrepancy in the results,
that is, Q(P,D) ̸= Q(P ′, D), indicates a potential bug.

Database State Generation ( 1⃝) For a fully automated approach, we assume
D to be randomly generated. Common generation methods include mutation-based
methods [219, 106] and rule-based methods [182, 150, 151, 149]. To create D in
Figure 4.1, DQP executes lines 1–5 in Code 4.1. Generating a database state is
not a contribution of this paper, and DQP can be paired with any database state
generation method. In fact, D could also be manually specified.

Query Generation ( 2⃝) Based on D, DQP randomly generates a query Q in
step 2⃝ whose results we subsequently automatically validate to find bugs. Similar to
database state generation, many query generation approaches have been proposed [11,
24, 89, 117, 139, 157, 165], and DQP can, in principle, be paired with any of these
query generation methods.

Query Plan Enforcement ( 3⃝) DQP executes Q, for which the DBMS derives
a query plan P . Then, DQP attempts to force the DBMS to derive an alternative
query plan P ′ for the same query. Query hints and system variables are two ways
that affect query plans by using SQL statements without the need to modify the
source code of DBMSs. In Section 4.4 we describe more details about both ways. In
Figure 4.1, DQP enforces a P ′ that has a different join order than P by the query
hint /*+ JOIN_ORDER(transaction, user)*/.

Result Validation ( 4⃝) In step 3⃝, DQP executes Q(P,D) and Q(P ′, D) to
obtain results, and we check their consistency. Here, Q(P,D) = 99990.00, while
Q(P ′, D) = 0.00, so a bug is found.
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4.4 Implementation
We implemented DQP in SQLancer,10 a DBMS testing framework that randomly

generates database states and queries complying with the SQL grammar, and
subsequently refer to our prototype as SQLancer+DQP. We discuss the technical
details for implementing SQLancer+DQP in this section.

4.4.1 Database and Query Generation

We adopted the grammar-based method provided by SQLancer to randomly
generate syntactically correct SQL statements. SQLancer encodes the grammar
of DBMSs into a tree structure, and DQP randomly walks the tree to generate
an SQL statement. To generate D, DQP generates non-query statements, such
as CREATE TABLE and CREATE INDEX. Similarly, to generate Q, DQP randomly walks
the tree to generate query statements, that is SELECT. Grammar-based generation
methods are also used in TQS and SQLSmith [182].

Generating JOIN. While SQLancer already generates JOINs for many DBMSs, it
lacks the support of JOINs for MySQL and MariaDB. We updated SQLancer to
support generating the JOIN clause for MySQL and MariaDB with reference to the
code of JOIN in TiDB’s implementation11 in SQLancer.

4.4.2 Query Plan Enforcement

Query hints and system variables are two ways that affect query plans by SQL
statements without requiring modifications to the source code of the DBMS under
test.

Query hints. A query hint is a comment-like clause in a query and can affect
the behaviors of the query optimizer. Query hints are widely supported by popular
DBMSs, such as MySQL,12 MariaDB,13 and TiDB.14 For the query hints that require

10https://github.com/sqlancer/sqlancer
11https://github.com/sqlancer/sqlancer/blob/cddff6/src/sqlancer/tidb/ast/

TiDBJoin.java
12https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
13https://mariadb.com/kb/en/optimizer-hints/
14https://docs.pingcap.com/tidb/stable/optimizer-hints
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table or column names as parameters, we randomly generate such names according to
the query. In Figure 4.1, the query hint /*+ JOIN_ORDER(transaction, user)*/ enforces
the query optimizer to join both tables in a specific order, which is the difference
between P ′ and P .

System variables. Another way to affect query plans is by setting system vari-
ables that affect the query optimizer. The variable optimizer_switch for MySQL15

and MariaDB16 is a system variable that affects query optimization and thus the
generated query plans. Concretely, DQP executes a SET statement with the query
to configure the system variable to enforce a different query plan. For example,
in MariaDB, DQP may execute this SET statement and the query: SET STATEMENT

optimizer_switch=’index_merge=on’FOR SELECT t0.c0 FROM t0. The prefix SET configures
the system variable taking effect for the following SELECT statement, and index_merge

controls whether to enable the index merge optimization.

Efficiency consideration. For testing efficiency, we enforce multiple query plans
{P ′, P ′′, ...} by enumerating all possible query hints and values of the system variable
in an iteration. Doing so is feasible as we observed that both query hints and
potential values associated with the system variable are finite and small in number.
We examined DBMS documents and extracted 32 query hints and 26 options for
the system variable optimizer_switch in MySQL, 37 options for the system variable
optimizer_switch in MariaDB, and 22 query hints in TiDB for enforcing different
query plans. In Figure 4.1, for simplicity, we only show the executions of P and P ′.

4.4.3 Result Validation

We initially observed false alarms during step 4⃝. As clarified by the DBMS
developers, these false alarms were due to ambiguous queries, which refer to queries
whose results are not guaranteed to be consistent or predictable. To exclude these
false alarms, we identify ambiguous queries by checking whether a different row
order in tables affects the result. After implementing this technique, we observed no
false alarms. After an iteration, DQP returns back to step 1⃝ or 2⃝ to start a new

15https://dev.mysql.com/doc/refman/8.0/en/switchable-optimizations.html
16https://mariadb.com/kb/en/optimizer-switch/
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iteration. Since generating D is relatively slow, DQP returns to step 2⃝ by default.
Only after a fixed number of iterations, does DQP return to step 1⃝. The number
is configurable, and we configured the number to be 10,000, which was empirically
determined to work well in prior work [85].

Ambiguous queries. Ambiguous queries may incur false alarms, as also observed
in other DBMS testing approaches [149, 150]. Investigating and analyzing all
categories of ambiguous queries is challenging and exceeds the scope of this paper.
We discuss the ambiguous queries that we encountered in practice. One kind of
ambiguous queries17 is including non-aggregated columns in a SELECT clause. A
column that is not included in GROUP BY, is a non-aggregated column. If we include
non-aggregate columns in SELECT, some DBMSs return the non-aggregated column of
a random row from each group. The other DBMSs, such as PostgreSQL, reject such
ambiguous queries. Code 4.4 shows a concrete example that we encountered when
testing TiDB. For the test case in the top half, both queries retrieve the column
t0.c0, which is not included in GROUP BY. The function CAST converts both 0.9 and 0.8
to 1, so both rows in t0 will be in the same group, but both queries return different
results as they return a random row of the group. These ambiguous queries cause
false alarms in the validation step 4⃝.

Algorithm 1: Ambiguous query identification
Input: query: Q, two query plans of Q: P P ′, database: D

1: ambiguous = false
2: Minimize(Q,D, P, P ′)
3: for D′ in Permutation(D) do
4: if V alidate(P, P ′, Q,D′) ̸= V alidate(P, P ′, Q,D) then
5: ambiguous = true
6: break
7: end if
8: end for

Output: ambiguous

Ambiguous query identification algorithm. Algorithm 1 shows our algorithm
to identify ambiguous queries by checking whether a different row order in tables

17https://docs.pingcap.com/tidb/v6.5/dev-guide-unstable-result-set
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Code 4.4: An unstable behavior identified by recondition.
1 CREATE TABLE t0(c0 FLOAT);
2 INSERT INTO t0 VALUES (0.9), (0.8);
3 CREATE INDEX i0 ON t0(c0);
4 SET @@sql_mode=’’;
5
6 SELECT t0.c0 FROM t0 GROUP BY CAST(t0.c0 AS DECIMAL); -- {0.8}
7 SELECT /*+ IGNORE_INDEX(t0, i0)*/t0.c0 FROM t0 GROUP BY CAST(t0.c0 AS

DECIMAL); -- {0.9}
8
9 --------------------------------------------------------------------------------

10 CREATE TABLE t0(c0 FLOAT);
11 INSERT INTO t0 VALUES (0.8), (0.9);
12 CREATE INDEX i0 ON t0(c0);
13 SET @@sql_mode=’’;
14
15 SELECT t0.c0 FROM t0 GROUP BY CAST(t0.c0 AS DECIMAL); -- {0.8}
16 SELECT /*+ IGNORE_INDEX(t0, i0)*/t0.c0 FROM t0 GROUP BY CAST(t0.c0 AS

DECIMAL); -- {0.8}

affects the validation result. First, to reduce the computational complexity, we
minimize Q and D. A bug-inducing test case that is identified by the step 3⃝
typically includes hundreds of SQL statements to initialize database states and query
results. To efficiently execute them multiple times for identifying ambiguous queries,
we minimize each test case both using C-Reduce [146] and manually. Figure 4.1
includes the minimized test case that includes only two tables and four rows. Then,
we permutate the rows in all tables. For each permutation D′, if it affects the
validation result, V alidate(P, P ′, Q,D′) ̸= V alidate(P, P ′, Q,D), the query is an
ambiguous query. In Code 4.4, permutating the rows in t0 incurs a different result
for the second query, and the discrepancy disappears. DQP identifies and ignores
this test case as the discrepancy likely indicates an ambiguous query.

Algorithm scalability. We believe that in practice, Algorithm 1 is feasible, as
databases used to reproduce most bugs in existing works are small after minimization;
for example, the average number of SQL statements in minimized bug-inducing test
cases is 3.69 across 499 historical bugs found by SQLancer.18 That most test cases
can be reproduced with only small bug-inducing test cases has been observed in
various testing works, such as for file systems [120], Java programs [5], and answer-set
programs [128], and is known as the so-called small-scope hypothesis. For Figure 4.1,

18https://github.com/sqlancer/bugs/blob/96cbb8/bugs.json
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each table includes two rows, so the number of permutations is 2! ∗ 2! = 4. Except
for the original permutation, the loop at line 3 executes at most 3 times. Through
the test case minimization, the execution number of the loop reduces exponentially.

4.5 Evaluation
To evaluate the effectiveness and efficiency of DQP, we sought to answer the

following questions:

Q.1 Bug Reproduction. Can DQP find the bugs found by TQS?

Q.2 New Bugs. Can DQP find previously unknown bugs?

Q.3 Bug-finding Efficiency. How efficiently can DQP find bugs?

Q.4 Bug-finding Effectiveness. How effective is DQP compared to other test
oracles for finding logic bugs?

Q.5 Coverage. To what extent does DQP cover query optimizers?

Tested DBMSs. We tested the same DBMSs, MySQL, MariaDB, and TiDB as
we studied in Section 4.2. MySQL is one of the most popular relational DBMSs.
MariaDB is another popular DBMS that was forked from MySQL. TiDB is a popular
enterprise-class DBMS, and its open version on GitHub has been starred more than
35k times. Importantly, these DBMSs were also tested by TQS. Because the bug
reports of PolarDB were not published by the TQS authors, we did not test PolarDB.
For Q2 and Q4, we used the latest available development versions (MySQL: 8.1.0,
MariaDB: 11.1.2, TiDB: 7.4.0). For a fair comparison in Q3, we used the same
versions as TQS used (MySQL: 8.0.28, MariaDB: 10.8.2, TiDB: 5.4.0). All DBMSs
were running in default configurations.

Experimental infrastructure. We conducted all experiments on an AMD EPYC
7763 processor that has 64 physical and 128 logical cores clocked at 2.45GHz. Our
test machine uses Ubuntu 22.04.2 with 512 GB of RAM, and a maximum utilization
of 40 cores.
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Q.1 Bug Reproduction

We evaluated whether DQP, as a simple testing approach, can find the logic bugs
found by TQS. As found in Section 4.2, 14 of 15 unique bugs and all 10 join-related
bugs were reported in the same manner, which is similar to the approach of DQP, so
we assumed DQP can find these bugs as well. We used the test cases in the public
bug reports from TQS (see Table 4.1) as the initial database state and the original
query, and DQP enforces a different query plan for the query followed by step 3⃝
in Figure 4.1. If we observe any discrepancy between the results returned by the
original and derived queries, we deem that the bug can be found by DQP.

Results. DQP can identify 14 of 15 unique bugs that were reported by TQS. In
Code 4.2, which shows a previous-discussed bug-inducing test case found by TQS,
the bug-inducing test case includes two queries, the only difference of which is the
query hint, and the description of the bug reason is “no_semijoin produce wrong
results”. Therefore, DQP can derive the second query by adding the query hint
no_semijoin, and easily find this bug.

We also found that all 10 join-related bugs can be found by DQP, as they were
all reported in a manner like Code 4.2. Although TQS finds a bug by comparing
the execution result against a ground-truth result, the TQS authors explained the
bugs to developers by providing a reference query that has an inconsistent result as
the buggy query. The result demonstrates that DQP can find the majority of bugs
that were found by TQS.

14 of 15 unique bugs, and all 10 join-related bugs found by TQS can be detected
by DQP.

Q.2 New Bugs

Apart from reproducing existing bugs found by TQS, we evaluated whether
SQLancer+DQP can find previously unknown bugs. We would expect so due to
the broader testing scope. DQP can be applied also to non-equijoin and queries
without JOINs, given that these queries’ query plans can be influenced by query hints
or system variables. We ran SQLancer+DQP twice for 24 hours on three DBMSs
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Table 4.2: Previously unknown and unique bugs found by DQP.

DBMS Bug Status Severity Logic Join
MySQL 112243 Confirmed Non-critical ✓ ✓
MySQL 112242 Confirmed Serious ✓
MySQL 112264 Confirmed Serious ✓ ✓
MySQL 112269 Confirmed Serious ✓ ✓
MySQL 112296 Confirmed Non-critical ✓ ✓
MariaDB 32076 Confirmed Major ✓
MariaDB 32105 Confirmed Major ✓ ✓
MariaDB 32106 Confirmed Major ✓ ✓
MariaDB 32107 Confirmed Major ✓ ✓
MariaDB 32108 Confirmed Major ✓ ✓
MariaDB 32143 Confirmed Major ✓ ✓
MariaDB 32186 Confirmed Major ✓ ✓
TiDB 46535 Confirmed Major ✓ ✓
TiDB 46538 Confirmed Moderate
TiDB 46556 Confirmed Major
TiDB 46580 Fixed Critical ✓ ✓
TiDB 46598 Confirmed Major ✓
TiDB 46599 Confirmed Major ✓
TiDB 46601 Fixed Critical ✓
TiDB 47019 Confirmed Major ✓
TiDB 47020 Confirmed Major ✓ ✓
TiDB 47286 Confirmed Major ✓ ✓
TiDB 47345 Confirmed Critical ✓ ✓
TiDB 47346 Confirmed Major
TiDB 47347 Confirmed Major
TiDB 47348 Confirmed Moderate
Sum: 26 21 15

aiming to find bugs. To reduce the possibility of finding duplicate bugs, between two
runs, we disabled the query hints and system variables that contribute to the bugs
found in the first run. Developers typically confirm our bug reports within several
days; however, due to the development process, these bugs usually require several
weeks or months to be fixed for the next release version. A duplicated bug reported
is identified by developers as they typically explicitly respond if a duplicate issue is
reported. To avoid reporting duplicate bug reports, we reported only the bugs that
were likely unique, rather than all bug-inducing test cases. Specifically, for each
query hint and available option of the system variables, we report at most one bug.
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Bug overview. Table 4.2 shows the unique, previously unknown 26 bugs found
by SQLancer+DQP. The column Logic represents whether the bug is a logic bug,
and the column Join represents whether the bug is related to join optimizations.
We submitted 32 bug reports to developers, in which 26 bugs were confirmed as
unique and previously unknown bugs, 1 bugs were duplicates, 1 was waiting for
further analysis, and 4 bugs were false alarms due to ambiguous queries. These false
alarms inspired us to design the Algorithm 1, and we observed no false alarms after
implementing the algorithm. Note that #47019 and #47020 in TiDB are potential
duplicates as they cannot be observed after fixing the bug #46601. We are awaiting
the developers’ response to confirm whether they are duplicates.19 Therefore, we
deemed them unique as developers did not claim they were duplicates.

Logic bugs. Out of the unique and previously unknown 26 bugs, 21 were logic
bugs in query optimizations, as they were found due to inconsistent results returned
by different query plans of the same query. The non-logic bugs were due to internal
errors and crashes that can be exposed without comparing the results of executing
different query plans.

Join-related bugs. 15 of 21 logic bugs were about join optimizations as their
minimized test case requires at least one JOIN. While DQP can find bugs across
various query optimizations, the majority of the found bugs relate to join opti-
mizations, and the bugs in join optimizations ideally should be found by TQS.
To identify bugs related to join optimizations, we followed the same classification
method as in Section 4.2, which considers join optimization bugs as logic bugs
that include at least one JOIN clause. The results show that join optimizations are
more buggy than other query optimizations, and TQS overlooked our found bugs in
join optimizations. Our simple approach, DQP, shows a surprising effectiveness in
finding these join-optimization bugs.

Bug severity. One important question is whether the bugs DQP found are
important. For TiDB, whose bug severity is specified by developers, 12 of 14 found
bugs have the bug severity of Major or Critical, which represents that the bugs

19https://github.com/pingcap/tidb/issues/47019#issuecomment-1734913792
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Code 4.5: A bug found by DQP by setting system variables in MySQL.
1 CREATE TABLE t0(c0 INT);
2 INSERT INTO t0(c0) VALUES(1);
3 CREATE INDEX i0 USING HASH ON t0(c0) INVISIBLE;
4
5 SELECT t0.c0 FROM t0 WHERE COALESCE(0.6) IN (t0.c0); -- {}
6 SET SESSION optimizer_switch = ’use_invisible_indexes=on’;
7 SELECT t0.c0 FROM t0 WHERE COALESCE(0.6) IN (t0.c0); -- {1}

seriously affected the target system and typically have high priorities to be fixed.
The one bug found by TQS also has the bug severity of Critical. For MySQL and
MariaDB, we found that the bug severities are specified by users and typically not
updated by the developers. Thus, we believe that they are inaccurate. However,
since they were reported in the TQS paper, we also provide them for comparison.
10 of the 12 found bugs in MySQL and MariaDB have bug severity of Serious and
Major, while all 12 bugs in TQS paper have the bug severity of Serious, Major, or
Critical. To further demonstrate the importance of our found bugs, we present two
selected examples.

Example 1: a bug found by setting system variables. Code 4.5 shows
an example of a bug we found in MySQL by controlling the system variable
optimizer_switch. The configuration use_invisible_indexes controls whether the query
optimizer considers invisible indexes, which are excluded from query optimizations by
default. In this example, the index i0 is set to INVISIBLE, so the first query retrieves the
data without using the index. When setting the variable to use_invisible_indexes=on,
the second query uses index i0 to retrieve the data. This bug is due to the incorrect
index optimization. Without DQP, it is hard to know if a query using that index
returns an incorrect result. We specified the severity Serious when submitting the
bug report. Of the 21 logic bugs DQP found in query optimizations, 10 bugs are
found by setting system variables.

Example 2: a bug found by setting query hints. Code 4.6 shows another
example bug we found in TiDB by setting the query hint MERGE_JOIN. The query hint
MERGE_JOIN instructs the query optimizer to use the sort-merge join algorithm when
executing the JOIN operator. With reference to the developers’ reply, the root cause
for the bug is due to the operation Projection, which corresponds to a projection
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Code 4.6: A bug found by DQP by setting query hints in TiDB.
1 CREATE TABLE t0(c0 INT);
2 CREATE TABLE t1(c0 BOOL, c1 BOOL);
3 INSERT INTO t1 VALUES (false, true);
4 INSERT INTO t1 VALUES (true, true);
5 CREATE VIEW v0(c0, c1, c2) AS SELECT t1.c0, LOG10(t0.c0), t1.c0 FROM t0, t1;
6 INSERT INTO t0(c0) VALUES (3);
7
8 SELECT COUNT(v0.c2) FROM v0, t0 CROSS JOIN t1 ORDER BY -v0.c1; -- empty set
9 SELECT /*+ MERGE_JOIN(t1, t0, v0)*/COUNT(v0.c2) FROM v0, t0 CROSS JOIN t1

ORDER BY -v0.c1; -- {4}

operation in relational algebra. When using MERGE_JOIN, the operation Projection

wrongly returns an empty output, so the first query returns an unexpected empty
result. DQP found this bug by comparing the results of the same query with and
without the query hint MERGE_JOIN. Projection is prevalent as it is usually executed
for a SELECT, so the developers assigned the severity Critical to this bug and fixed it
in one week. Of the 21 logic bugs DQP found in query optimizations, 11 bugs are
found by setting query hints.

DQP enabled us to find and report 26 unique, previously unknown bugs, which
were missed by TQS.

Q.3 Bug-finding Efficiency

We evaluated how many bugs DQP can find in 24 hours. We ran DQP with the
default configurations of SQLancer for 24 hours, and measured the number of bug-
inducing test cases. We excluded bugs that cause crashes or internal errors, because
they are not directly found by DQP, but by an implicit test oracle. Although TQS
was evaluated in a similar experiment in Section 5.2 of TQS paper, it is challenging to
make a fair comparison, due to the aforementioned unavailability of its source code,
and because some experimental configurations are not clear. First, both TQS and
DQP adopt a grammar-based test case generation method, but the implementation
differences are unclear, such as the possible expressions for WHERE. While other DBMS
testing works [219, 85] also omit detailed descriptions, they provide the source code,
from which this information can be extracted. Second, TQS supports multiple
threads, but we have not found the number of threads used for their efficiency
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Figure 4.2: Number of bug-inducing test cases found by DQP in 24 hours and 10
runs.

evaluation in Figure 8 of Section 5.2 in the TQS paper. For SQLancer+DQP, we
ran 10 threads, which is a common practice for evaluating testing tools [95] and is
also used by other DBMS testing work [85]. Third, it is unclear whether the TQS
authors counted only logic bugs or all kinds of bugs. Last, TQS and DQP were
evaluated on different machines, which have a significant impact on efficiency, so
their efficiency results are not directly comparable.

Results. Figure 4.2 shows the number of bug-inducing test cases found by DQP
in MySQL, MariaDB, and TiDB for 24 hours. In total, DQP found 24, 120, and 72
bug-inducing test cases in three DBMSs respectively. Due to several crash bugs found
by SQLancer+DQP, MySQL and TiDB exited at around 9 hours. Compared with
the results as shown in Section 5.2 of TQS paper, DQP shows a clear advancement
over TQS.

Compared with the results in Section 5.2 of the TQS paper, DQP demonstrates
significant progress in bug detection efficiency compared to TQS. Recall that it is
challenging to conduct a fair comparison with TQS. Nevertheless, the substantial
number of bug-inducing test cases found by SQLancer+DQP demonstrates its
efficiency even without sophisticated techniques to improve test-case generation.

SQLancer+DQP found 216 bug-inducing test cases in 24 hours in MySQL, Mari-
aDB, and TiDB.
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Figure 4.3: The number of bugs detected by oracles.

Code 4.7: Equivalent test cases of Code 4.5 for NoREC and TLP.
1 CREATE TABLE t0(c0 INT);
2 INSERT INTO t0(c0) VALUES(1);
3 CREATE INDEX i0 USING HASH ON t0(c0) INVISIBLE;
4 -------------------------------------NoREC-------------------------------------
5 SELECT COUNT(*) FROM t0 WHERE COALESCE(0.6) IN (t0.c0); -- {0}
6 SELECT SUM(count) FROM (SELECT (COALESCE(0.6) IN (t0.c0)) IS TRUE AS count

FROM t0) as t; -- {0}
7 --------------------------------------TLP--------------------------------------
8 SELECT t0.c0 FROM t0; -- {1}
9 SELECT t0.c0 FROM t0 WHERE COALESCE(0.6) IN (t0.c0) UNION SELECT t0.c0 FROM t0

WHERE NOT (COALESCE(0.6) IN (t0.c0)) UNION SELECT t0.c0 FROM t0 WHERE
(COALESCE(0.6) IN (t0.c0)) IS NULL; -- {1}

Q.4 Bug-finding Effectiveness

We compared DQP with two state-of-the-art oracles for finding logic bugs:
Non-optimizing Reference Engine Construction (NoREC) [149], and Ternary Logic
Partitioning (TLP) [150]. NoREC checks for inconsistent results of a predicate used
in a query that the DBMS might optimize and one that is used in a query that
is difficult to optimize. TLP expects a query and derives multiple more complex
queries, each of which computes a partition of the result to check whether the
combined partitions and the original query’s results are equivalent. Both oracles are
implemented in SQLancer. We did not consider other test oracles for finding logic
bugs, such as Pivoted Query Synthesis (PQS) [151], which is not supported for the
three evaluated DBMSs in SQLancer.

Methodology. We used the same methodology as prior works [84, 150, 149] to
conduct a manual and best-effort analysis to identify the overlap and unique bugs
found by DQP, NoREC , and TLP. It is difficult to distinguish whether two bug-
inducing test cases found by different methods incur the same underlying bug [110].
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We only collected the minimized test cases that are reported to developers assuming
that each test case represented a unique bug. While we cannot completely rule
out misclassifications that might be due to overlooking that a bug could be found
by another query, we believe that the majority of cases were clear. In total, we
collected all 41 logic bugs, of which 40 are reproducible, found by NoREC and
TLP for MySQL, MariaDB, and TiDB from the public bug list,20 and 21 logic bugs
found by DQP in Table 4.2. Then, we used a bug-inducing test case for DQP to
derive another test case by applying NoREC and TLP to the same database and
the corresponding query, and vice versa.

Results. Figure 4.3 shows the number of bugs found by DQP, NoREC , and TLP.
17 of 21 logic bugs found DQP cannot be found by NoREC or TLP. Out of the 17
bugs, 10 bugs are because both the original query and the derived query result in
correct or incorrect query plans. The other 7 bugs cannot be rewritten to equivalent
test cases for NoREC or TLP due to the lack of necessary clauses for both oracles,
such as WHERE. We also found that DQP cannot reproduce all 4 bugs found by
NoREC , and 31 of 36 bugs found by TLP. The result shows that the bugs found
by DQP rarely overlap with the bugs found by NoREC and TLP, suggesting that
DQP is complementary to NoREC and TLP.

Example. Code 4.7 shows an example of rewriting the bug-inducing test case
of Code 4.5 to equivalent test cases for NoREC and TLP—note that this is a
mechanical transformation. For NoREC , the first query is the same as the original
query in line 5 of Code 4.5, and the second query is derived from the first query by
moving the predicate in WHERE. For TLP, the first query is generated by omitting
the WHERE in the original query, and the second query is a union of three queries
with different predicates in WHERE. Both oracles find a bug if both queries return
inconsistent results. Without setting the option use_invisible_indexes=on, the buggy
index i0 is not considered in query optimization, so all queries checked by NoREC
and TLP fail to use the buggy index to expose the bug.

NoREC and TLP cannot find 17 of 21 logic bugs found by DQP.
20https://github.com/sqlancer/bugs/blob/96cbb856/bugs.json
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Figure 4.4: Average number of unique query plans covered by DQP in 24 hours and
10 runs.

Q.5 Coverage

We evaluated how well DQP exercises query optimizers, which is the key compo-
nent that we aimed to test. We considered various metrics to capture the notion of
coverage. First, since DQP enforces different query plans of the same queries, we
examined how comprehensively query plans are covered by plan coverage, which
refers to the ratio of exercised unique query plans to the estimated number of all
observable unique query plans. Then, we used query hints and system variables to
enforce query plans, so we evaluated to what extent they affect query optimizers by
hint and variable coverage and join coverage. Last, we also evaluated code coverage,
a common metric to evaluate how much code is tested.

Plan coverage. We measured the ratio of unique query plans DQP covers for
all observable unique query plans. A query plan represents an optimized query,
and a higher number of unique query plans implies that more query optimization
strategies are applied. A challenge with respect to measuring the number of unique
query plans is that query plans include unstable auxiliary information, which usually
differs for almost every query plan. We consider a query plan structurally unique,
if the query plan is still unique after removing such information. To exclude this
information, we omitted schema names (e.g., column and table names), estimated
cost (e.g., cardinalities), and random identifiers (e.g., line identifiers) in query plans.
This method follows the practice reported in a prior work [85]. Another challenge is
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the unknown upper bound of the number of query plans, as it is unclear how many
possible combinations of operations for a query plan exist; note that the number is
infinite in principle because an additional JOIN clause will typically result in a more
complex query plan. As a best effort, we estimated the upper bound by combining
all unique query plans covered by DQP, NoREC , and TLP across 24 hours and 10
runs, assuming the number of combined unique query plans as the upper bound.
Suppose Di, Ni, Ti represent the set of unique query plans covered by three oracles
respectively for a DBMS in run i, then the estimated number of the upper bound is
| ⋃10

i=1(Di ∪Ni ∪ Ti)|.

Results. Figure 4.4 shows the average number of unique query plans covered by
SQLancer+DQP across 10 runs in 24 hours. In summary, for MySQL, MariaDB, and
TiDB, the estimated upper bounds of plan coverage are 27156, 7553, and 253947, and
SQLancer+DQP covers 15.42% (4187.5), 18.17% (1372.4), and 13.34% (33876.6) on
average for each run. Due to several crash bugs found by SQLancer+DQP in TiDB,
all 10 runs exited in around 12 hours. Although in a shorter time period, TiDB
covered the most unique query plans. A possible reason is that TiDB includes richer
elements in query plans than others. For example, TiDB is a distributed DBMS, and
indicates the execution node of each operator in query plans, while other DBMSs do
not have similar information. Although covering less than average 20% plan coverage
for three DBMSs, DQP has much higher plan coverage than NoREC and TLP, both
of which achieved less than 1% average plan coverage across 10 runs. This is expected,
because NoREC and TLP do not optimize for query plan coverage. We note that
the overall low coverage can be explained by diverse query plans being explored
across runs—less than 50% overlapped for SQLancer+DQP across 10 runs, and thus
the sum of average coverage numbers for each run of DQP, NoREC , and TLP is
not close to 100%. The reason may be randomly generated databases and queries,
which typically differ across runs. We cannot compare the plan coverage by DQP
and TQS, because TQS’s source code is unavailable, and no query plan coverage
numbers were reported in its paper. For all three DBMSs, SQLancer+DQP covers
thousands of unique query plans, which shows that SQLancer+DQP is significant
in testing query optimization.
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Table 4.3: The number of query hints or system variables that affect the three
categories of query optimizations.

DBMS Join Index Table
MySQL 14 26 18
MariaDB 18 5 14
TiDB 10 4 8
Sum: 42 35 40

Hint and variable coverage. We identified three categories of query optimiza-
tions that can be affected by query hints or system variables. Table 4.3 shows the
number of query hints or systems variables of each category. Although query plans
and query optimizations are DBMS-specific and not directly comparable, we found
that the three DBMSs provide hints or variables to affect common categories of
optimizations: Join, the algorithms and orders of joining two tables; Index, the
algorithms and applicable range for indexes; and Table, the strategies to write and
read tables, such as table caching for repeated queries and full table scan for small
tables. As a concrete example, to affect join optimizations, query hint HASH_JOIN

for MySQL and TiDB is used to enforce using the hash algorithm, and variable
hash_join_cardinality for MariaDB is used to decide whether using historical car-
dinality statistics for optimizing hash joins. Although MariaDB is derived from
MySQL, both have a different number of query hints and system variables. For
example, for the category Index, MySQL has two query hints and four system vari-
ables tailored for affecting the algorithm of index merge, which is an optimization
for using indexes to merge results from multiple scans, while MariaDB does not
have a similar hint or variable to affect it. TiDB has additional optimizations of the
category Table for switching storage engines, which can be affected by query hints.
For example, the query hint READ_FROM_TIFLASH is used to enforce reading tables from
TiFlash, a storage engine of TiDB. This optimization is specific to TiDB, while
MySQL and MariaDB can only specify storage engines when creating tables. All
three DBMSs provide support for query hints and system variables, influencing the
same three categories of query optimizations. However, they impact specific query
optimizations to each DBMS.
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Join coverage. Since DQP aims to find bugs in join optimization, we also
evaluated how many join operators in query plans SQLancer+DQP covered by
setting query hints and system variables across 10 runs in 24 hours. We examined
whether our query plans cover the join operators illustrated in the documents of
MySQL,21 MariaDB,22 and TiDB.23 In total, both MySQL and MariaDB have 12
join operators, and TiDB has 3 join operators. SQLancer+DQP covered 7 of 12
join operators for MySQL and MariaDB, and all 3 join operators for TiDB. Both
MySQL and MariaDB do not cover four join operators: fulltext, which is used for
full-text indexes; index_merge, which is used for union or intersection expressions;
unique_subquery, and index_subquery, both of which are used for subqueries. MySQL
and MariaDB provide a specific query hint INDEX_MERGE to enable index_merge, but the
join operator is not covered by our implementation of DQP, since it requires specific
expressions in queries. We have not found any hint or variable that directly enforces
the other three join operators. Additionally, MySQL does not cover the join operator
system, which is used for system tables, and MariaDB does not cover ref_or_null,
which is used for index lookup with null values during joining. The reason for the
two not-covered operators may be the randomness of test case generators, as either
operator is covered by the other DBMS.

Code coverage. While we were primarily interested in the number of covered
unique query plans, code coverage is a common metric for evaluating how much a
system might be tested. We used gcov,24 a coverage tool for C/C++ language, to
collect line coverage of MySQL and MariaDB, and used cover,25 a coverage tool
for the Go language, to collect the statement coverage of TiDB. Line coverage is
the default metric for gcov, and statement coverage is the default metric for cover.
We ran SQLancer+DQP for 24 hours and 10 runs simultaneously. Due to resource
limitations, each target DBMS ran one instance, and we measured their sum line
and statement coverage across 10 runs. For the same reason that TQS’s source
code is unavailable, we cannot compare the code coverage between DQP and TQS.

21https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_system
22https://mariadb.com/kb/en/explain/#type-column
23https://docs.pingcap.com/tidb/stable/explain-joins
24https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
25https://go.dev/testing/coverage/
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Since DQP finds bugs in JOIN optimization, we measured only the code coverage
of query optimization. Specifically, we measured the code in the folder sql for
MySQL and MariaDB, and in the folder planner for TiDB. The results show that
SQLancer+DQP covered 22.2% and 27.7% line coverage for MySQL and MariaDB,
and 36.1% statement coverage for TiDB. The coverage appears to be low, as less
than 50% coverage for all DBMSs. However, this is expected because we cannot
enumerate all possible query plans.

DQP covers thousands of unique query plans and more than half join operators
for MySQL, MariDB, and TiDB in 24 hours.

4.6 Discussion
We discuss some key characteristics of DQP, as well as the evaluation of TQS.

Bug diversity. Our found bugs can affect a variety of different queries. The bugs
are typically due to incorrect optimizations, such as the incorrect index optimization
as shown in Code 4.5, and the incorrect join optimization as shown in Code 4.6.
These buggy optimizations can affect other queries as well, not only the bug-
inducing test cases that make use of specific query hints or values of system variables.
For example, considering Code 4.5, if the index i0 is not created with INVISIBLE

by CREATE INDEX i0 USING HASH ON t0(c0), the first query SELECT t0.c0 FROM t0 WHERE

COALESCE(0.6)IN (t0.c0) returns the incorrect result 1 without setting up any query
hint or system variables.

Path to adoption. We believe that a simple testing approach has the potential
to be widely adopted. From a conceptual perspective, DQP is a general black-box
method that compares the results of different query plans, which is an easy-to-
understand method. It is not necessary to instrument code for tracing internal
execution information or understand how the result is computed. From an imple-
mentation perspective, DQP is easy to implement as we implemented DQP in less
than 100 lines of Java code per DBMS. From an integration perspective, DQP can
be paired with existing available databases and query generators, or test suites.
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From an applicability perspective, DQP can test a significant number of DBMSs, as
8 out of 10 most popular relational DBMSs26 support controlling query optimization
by users. The remaining two DBMSs are Microsoft Access and Snowflake, for which
we have not found any document that explicitly explains how to manually control
query optimization. Considering these features of DQP, we argue that DQP can be
widely adopted.

Method contribution and novelty. The core contribution of this paper is that
we demonstrated that the simple and easy-to-understand testing DQP approach
shows the same level of bug-finding effectiveness as the more complex TQS approach.
The authors of TQS mentioned the comparison of queries with query hints in Section
5.3 of the TQS paper by disabling the derivation of ground-truth results. Some
systems in practice, such as DuckDB, already use similar techniques as well in their
own testing framework. DuckDB does this by running both an unoptimized and
optimized version of a query, and checking consistency of the results. It controls the
optimizations by a specific statement PRAGMA enable_verification, which is customized
for DuckDB.27 The core contribution of this work is not the novelty of DQP. Our
core contribution is the insight that such a simple approach achieves the same level
of bug-finding efficiency as the sophisticated method TQS. In general, in a testing
context, we believe that simple, practical approaches provide significant benefits
over complex, but conceptually appealing ones.

The importance of TQS. TQS is the first approach for testing logic bugs in
join optimizations, and thus demonstrated the severity of the problem. Importantly,
TQS provides a new paradigm for finding logic bugs in DBMSs. In this work, we
showed that a simple method achieves the same level of bug-finding efficiency as
TQS. Nevertheless, TQS can find bugs that can not be found by DQP. Bug #99273
in Table 4.1 was found without showing discrepancies across executing different query
plans of the same query. Although it is unclear how TQS derives the ground-truth
result for this query that does not have a JOIN, DQP can not find this bug.

26https://db-engines.com/en/ranking/relational+dbms
27https://duckdb.org/dev/sqllogictest/intro#query-verification
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Inconsistent bug number of TQS. We identified 15 unique bugs in the public
bug list from TQS, while the authors of TQS claimed to have found 92 bugs. Based
on our study, we suspect that the authors used confusing terminology in the paper,
by refering to bug-inducing test cases as “bugs” and unique bugs as “bug kinds”,
which we clarified in this work. Additionally, we acknowledge that bug deduplication
is an open problem [33], and we also observed duplicate issues being counted as
bugs in other work.

Unavailable TQS source code. Two reasons exist that prevent us from com-
paring with TQS in our study and evaluation. First, the authors of TQS have
not released its source code. We sent two emails to all authors of TQS requesting
the source code, but the authors replied that the source code was not ready for
release: “I’m currently working on a follow-up project that builds upon the research I
presented. As a result, I’m in the process of refining and enhancing the codebase for
both projects. Once this work is complete, I plan to make the source code available
as open source or share it with colleagues who express an interest.” We also noticed
that the authors published another tool demonstration paper [168] that includes the
implementation of TQS. Unfortunately, after carefully checking and debugging its
source code,28 we found that the repository lacks the core approach implementation
of TQS, as also observed by another interested party.29 Second, it is challenging to
re-implement TQS as it consists of complex steps, with important details not being
described in the paper. For example, the authors claimed “We directly use these
data-driven schema normalization methods to generate our testing database schema”,
but it is not clear what concrete method they used to split the wide table and what
sub-tables are generated. TQS adopts Abstract Syntax Tree (AST)-based random
query generation, which is implemented “similarly to RAGS and SQLSmith”, but it
is insufficient to know what queries it can generate, such as what expressions are
generated and the maximum depth of the AST.

Threats to Validity. Our evaluation results face potential threats to validity. A
major concern is that TQS source code and TQS’s bug reports on PolarDB are not

28https://github.com/xiutangzju/dlbd/tree/b85b1f
29https://github.com/xiutangzju/dlbd/issues/1
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available. To alleviate this risk, we communicated with the authors of TQS, which
told us that TQS’s source code has not been ready for release yet. Because it is
challenging to re-implement TQS, we extracted the public bug list and conducted a
rigorous study described in Section 4.2. From the practical perspective, we compared
the bugs found by TQS and DQP to evaluate their bug-finding capabilities. From
the theoretic perspective, we discussed their conceptual differences in this section.
Another concern is the correctness of our implementation. To mitigate this risk,
DQP was built on a popular DBMS testing framework SQLancer, and we make the
source code publicly available. The last concern is the reliability of the results we
presented. To make sure our found bugs are real bugs, we reported each found bug
to developers and annotated the bug status according to developers’ replies. We
also make all bug reports public.

4.7 Conclusion
In this chapter, we have studied the state-of-the-art testing approach TQS, and

have proposed a simple, yet effective alternative approach DQP. The core idea of
DQP is comparing the consistency across the executions of different query plans of
the same query, which we derive by adding query hints or setting system variables.
Compared to TQS, DQP only needs to compare results instead of constructing
multiple graphs and tables for deriving ground-truth results, and supports finding
bugs in more query optimizations instead of only in equijoin optimizations. Our
evaluation has demonstrated that DQP can find 14 of the 15 unique bugs and all
10 join-related bugs found by TQS. Additionally, DQP has found 26 previously
unknown and unique bugs in MySQL, MariaDB, and TiDB, which were tested by
TQS. Our core contribution is the insight that a simple and easy-to-understand
approach is similarly effective as the more sophisticated method TQS. DQP requires
little implementation effort, is compatible with any test case generation methods, is
similarly efficient as TQS, and is a black-box testing method. We encourage DBMS
developers to use DQP in practice, as a cost-efficient way to find critical bugs in
DBMSs.
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Chapter 5

Query Plan Guidance

To realize a fully automated testing approach, test oracles, such as CERT and
DQP, are paired with a test case generation technique; a test case refers to a
database state and a query on which the test oracle can be applied. To make
test case generation efficient, in this chapter, we propose the concept of Query
Plan Guidance (QPG) for guiding automated testing towards “interesting” test
cases. QPG has been published in the 45th International Conference on Software
Engineering (ICSE’23) [85] and was awarded the ACM SIGSOFT Distinguished
Paper Award.

5.1 Introduction
Logic bugs, which refer to incorrect results returned by DBMSs, are a particularly

challenging category of bugs to find as they silently compute an incorrect result—
unlike, for example, crash bugs [205, 219], which cause the process to be terminated.
Consider Code 5.1, where the SELECT statement triggers a logic bug that causes the
returned result to unexpectedly contain a record, while it should be empty. It is
difficult to find logic bugs since the bugs silently compute an incorrect result—unlike
crash bugs, which terminate the process—and it is also challenging to obtain the
right answer to validate the results. Finding such bugs requires a so-called test
oracle, which validates the DBMS’ result. Recently, effective test oracles [150, 149,
151] have been proposed that brought validating the results of such queries within
reach.

Besides a test oracle, automatically finding logic bugs requires a test case genera-
tion method. For finding logic bugs in DBMSs, a test case refers to a database state
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and a query on which the test oracle can be applied. Recall that test case generation
techniques face two main challenges. First, diverse test cases should be generated
that stress various parts of the DBMS to increase the chance of finding bugs in them.
Second, the test cases should be valid both syntactically and semantically while also
corresponding to the structure imposed by the test oracle.

In this work, we propose Query Plan Guidance (QPG), a concept that utilizes
query plans to guide the test-case generation process towards diverse test cases. A
query plan is a tree of operations that describes how an SQL statement is executed
by a DBMS. It is readily provided by DBMSs—users can typically obtain a textual
representation using an EXPLAIN SQL statement—and is typically inspected by DBMS
users for tuning the performance of queries. Our insight is that a query plan provides
a compact and high-level summary of how a query is executed, therefore, covering
more unique query plans increases the likelihood of finding logic bugs. Consider
Code 5.1, which illustrates two scenarios of executing test cases with SQLite. In the
first scenario, the CREATE INDEX statement highlighted in red is omitted, causing the
SELECT statement to return an empty result. This result is expected, since column c

in table t2 has no data, and the join condition c=3 is false. In the second scenario, the
CREATE INDEX statement is executed, which causes SQLite to unexpectedly fetch the
row {|1|2|}. An index is an auxiliary data structure used by queries [60], which should
not have any semantic effect. While in both scenarios, the same query is executed,
the query plans shown below the test cases differ due to the two different database
states. The left query plan for the correct execution indicates that the records from
table t2 are read sequentially (SCAN t2). In contrast, the right query plan indicates
that the DBMS used the index to read the data (SCAN t2 USING COVERING INDEX i0),
which was incorrect. Besides indexes, various other factors can influence query plans
(e.g., data characteristics).

To investigate the potential of using query plan coverage as guidance, we studied
the query plan distribution of the SQL statements in the present 499 bugs found by
SQLancer. Our results show that, for the test cases of previously found bugs, the
query plan distribution of the SQL statements is sparse, so the query plan is diverse
and is possible to be used as a signal for guiding. We also found that the average
query plan length of the queries in previously found bugs is 2, which indicates a
potential to find more bugs in unexplored complex query plans.
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Code 5.1: A bug found by QPG in SQLite due to incorrect use of an index in
combination with a JOIN. Given the same SELECT, the left query plan is produced
if no index is present, while the right one uses the index.
1 CREATE TABLE t1(a INT, b INT);
2 INSERT INTO t1(a) VALUES(2);
3 CREATE TABLE t2(c INT);
4 CREATE TABLE t3(d INT);
5 INSERT INTO t3 VALUES(1);
6 CREATE INDEX i0 ON t2(c) WHERE c=3;
7
8 SELECT * FROM t2 RIGHT JOIN t3 ON d<>0 LEFT JOIN t1 ON c=3 WHERE t1.a<>0; -- {}

{|1|2|}
9 -------------------------------------------------------------------------------

10 QUERY PLAN
11 WITHOUT INDEX i0: WITH INDEX i0:
12 |--SCAN t2 |--SCAN t2 USING
13 COVERING INDEX i0
14 |--SCAN t3 |--SCAN t3
15 |--SCAN t1 |--SCAN t1
16 ‘--RIGHT-JOIN t3 ‘--RIGHT-JOIN t3
17 ‘--SCAN t3 ‘--SCAN t3

To generate valid queries that correspond to the oracles’ constraints, we propose
mutating the database state rather than the queries. Specifically, we re-use the
existing random grammar-based generation approach of SQLancer [150] to generate
the queries. However, we record all seen query plans for a given database state
and mutate this state when no new query plans are observed, indicating that the
current database state’s potential for enabling unobserved query plans has been
saturated. We modeled the decision-making process for selecting the most promising
mutation—an SQL statement that modifies the database state—as a multi-armed
bandit problem and assigned a high priority to the SQL statement that results in
the most new query plans across all executions. The multi-armed bandit problem
is a model in which a fixed limited set of resources has to be allocated between
competing choices in a way that maximizes the expected gain [15].

We implemented QPG in SQLancer and evaluated it on SQLite, TiDB, and
CockroachDB. We found 53 unique, previously unknown bugs, all of which have been
acknowledged by the developers. Of these, 46 have already been fixed. Three bugs
in SQLite had been hidden for more than six years before we found them, despite
the extensive existing testing efforts by the authors of SQLancer and SQLRight,
demonstrating the practical need for a more efficient test case generation approach.
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Table 5.1: Subjects for the query plan study.

DBMS Version LoC EXPLAIN Statement
CockroachDB 19.2.12 1.1M EXPLAIN (OPT)...
DuckDB 0.19 59K EXPLAIN...
H2 2.0.202 0.3M EXPLAIN...
MariaDB 10.4.25 3.6M EXPLAIN FORMAT=’JSON’...
MySQL 5.7.33 3.8M EXPLAIN FORMAT=’JSON’...
PostgreSQL 11.16 1.4M EXPLAIN (COSTS FALSE)...
SQLite 3.30.0 0.3M EXPLAIN QUERY PLAN...
TiDB 3.0.12 0.8M EXPLAIN...

To trigger many of the bugs, complex query plans are required, indicated by the
average length of query plans being 2.47× longer than that of the previously found
bugs. In terms of efficiency, our QPG-based implementation covers 4.85–408.48×
more unique query plans than SQLancer and SQLRight in 24 hours. In summary,
our results demonstrate that QPG is efficient in exploring more unique and complex
query plans, which contribute to finding logic bugs. The developers from SQLite
and TiDB showed interest in our method QPG, and TiDB invited me to give a talk
about more details.

Overall, we make the following contributions:

• We studied the query plans of the queries in previously found bugs to gauge
the idea’s potential;

• We propose Query Plan Guidance as a general idea for utilizing query plans
for testing;

• We propose a concrete testing approach that mutates database state rather
than queries to be compatible with existing test oracles;

• We implemented and evaluated the approach, which has found 53 unique,
previously unknown bugs in widely-used DBMSs.

5.2 Query Plan Study
To investigate the potential of using query plans as guidance, we studied the

uniqueness and complexity of query plans of the queries in previously found bugs.
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Table 5.2: Query plans of the queries in previously-found bugs. Length indicates
the average number of operations in a query plan.

Query Plans
DBMS Bugs Sum Unique Length
CockroachDB 68 37 32 3.43
DuckDB 75 59 18 2.00
H2 19 10 7 3.70
MariaDB 7 5 5 1.00
MySQL 40 35 22 1.03
PostgreSQL 31 9 3 2.33
SQLite 193 118 62 2.14
TiDB 62 43 32 5.07

Avg: 2.59

We hypothesized that we would see a wide variety of query plans, suggesting that a
bug-finding technique optimized for exploring more unique query plans might be
effective.

Subjects. We chose the public bug reports from SQLancer as our subjects.
SQLancer provides a public list1 including all found bugs and corresponding test
cases for 499 bug reports across 9 DBMSs. We excluded 4 bugs found in the DBMS
TDEngine, as this DBMS does not expose query plans. The query plan of a given
query can vary over versions; thus, to obtain accurate query plans, we chose the
most relevant release versions when the corresponding bugs were found. The details
of the chosen DBMSs are shown in Table 5.1.

Obtaining query plans. For all 495 bug-inducing test cases, we instrumented all
queries (i.e., SELECT statements) by using EXPLAIN statements as listed in Table 5.1.
By executing the test cases using the command-line interface of each DBMS, we
could obtain corresponding query plans. Depending on the DBMS, query plans
might include various additional auxiliary information. We identified three such
types. One type is the estimated cost (e.g., in PostgreSQL), which differs for almost
every query. The second type is expressions in WHERE clauses, which are included in
the query plans of some DBMSs (e.g., CockroachDB). The third type is random

1https://github.com/sqlancer/bugs
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identifiers, which are used to distinguish operations in a query plan (e.g., MariaDB
and MySQL). To exclude such auxiliary information, we accordingly adjusted the
parameters of the EXPLAIN statements, as shown in Table 5.1. Lastly, we removed the
names of tables, views, and indexes of the obtained query plans to distinguish query
plans based on their structure only. This was based on the intuition that two query
plans with the same execution logic, but different table names, would be processed
similarly by the DBMSs (e.g., SCAN t1, and SCAN t2).

Uniqueness analysis. Table 5.2 shows the query plan distribution. In total, we
obtained 316 query plans, of which 57.28% were unique. The number of query plans
is lower than that of test cases because 1) not all test cases have queries and 2)
some queries that previously exposed bugs were rejected by subsequent versions of
the DBMSs. The minimal percentage of unique query plans is 30.51% in DuckDB.
The maximum one is 100.00% in MariaDB, due to a low number of test cases.
Overall, for the queries in previously found bugs, the variety of different query plans
indicates that covering a wider variety of query plans might increase the likelihood
of discovering bugs.

Query plans of the queries in previously found bugs vary significantly, as 57.28%
of the query plans are unique.

Complexity analysis. We examined the complexity of the query plans of the
queries in previously found bugs. A query plan with many operations is due to a
complex database state or query. For instance, in SQLite, a query plan that retrieves
data from two tables requires at least three operations: SCAN table t0, SCAN table t1,
and MERGE results, which is more complex than SCAN table t0 alone. As shown in
the Length column of Table 5.2, the average number of operations per query plan is
2.59, which illustrates that the majority of bug-related query plans are compact. We
further found that the most frequent query plan across eight DBMSs is SCAN table t0,
which represents a sequential scan on a single table, without using an index. For
example, in SQLite, 26 of 118 query plans consist of a single table scan. This
demonstrates that the query plans for the previously found bugs are simple. While
this could indicate that, compact and simple query plans are sufficient to trigger
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these previously found bugs—as suggested by the small-scope hypothesis [5]—it
could also be that existing approaches have focused their testing on simple queries
and database states. We speculate that covering more complex query plans might
increase the likelihood of discovering bugs.

Query plans of the queries in previously found bugs are compact and simple, as
the average number of operations in a query plan is only 2.59.

5.3 Approach
To efficiently detect logic bugs in DBMSs, we propose to mutate databases

with Query Plan Guidance (QPG) towards more unique and increasingly complex
database states. Our insight is that the internal execution logic of the DBMS for a
given query is reflected by its query plan and, therefore, covering more unique query
plans increases the likelihood of finding logic bugs. Compared with naive random
generation, our method gradually mutates database states enabling subsequent
queries to cover more unique and complex query plans. We chose to mutate database
states rather than queries, since test oracles have various constraints on queries,
which are difficult to meet using mutational approaches [106]. Compared with
other coverage-based grey-box testing tools for DBMSs, such as Squirrel [219] and
SQLRight [106], we consider our method as black-box testing, as QPG requires no
access to the source code of the DBMS and uses information readily provided by
mature DBMSs. Thus, the technique can also be applied to commercial closed-source
DBMSs.

System overview. Figure 5.1 shows an overview of our QPG realization based
on Code 5.1. Given an initial database state at 1⃝, QPG generates a random SQL
query at 2⃝ and executes it on the database to validate the query’s result using the
test oracle. If the oracle indicates a bug, QPG outputs a bug report and restarts the
testing process. Otherwise, it records the query plan and appends it to the query
plan pool at 3⃝. Typically, the execution continues at 2⃝ with the same database
state. However, if no new unique query plan has been observed after a fixed number
of iterations, QPG mutates the database state at 4⃝ by applying a mutation operator
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Figure 5.1: Overview of QPG. The dashed lines refer to the data affected by 4⃝ in
the next iteration.

to the current database state to create a new one, assuming that this new state will
subsequently lead to new unique query plans being explored.

5.3.1 Database States

The initial database state can be either randomly generated or manually given.
In our implementation, we generate it by randomly executing DDL and DML
statements. To avoid empty database states, we execute CREATE TABLE statements
first. For example, to create the initial database state in Figure 5.1, we execute lines
1–5 in Code 5.1. We do not directly manipulate database files, since they are highly
structured [81], and any unexpected byte may incur an error that would impede the
testing process.
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5.3.2 Query Generation and Validation

Query generation. We generate queries whose results we subsequently automat-
ically validate to find bugs. The generated queries must comply with two main
constraints. First, queries must be semantically valid with respect to the database
state. For example, they must reference only existing tables and views. Second,
they must adhere to the constraints imposed by the test oracles. For example, the
NoREC test oracle requires a WHERE clause, but forbids other clauses (e.g., HAVING

or GROUP BY). To address this, we adopt SQLancer’s rule-based random generation
approach that generates queries based on the SQL dialects’ grammar adhering to
the imposed constraints. Many query generation approaches have been proposed [11,
24, 89, 117, 139, 157, 165], and our method can, in principle, be paired with any of
these query generation methods.

Validation. We use the state-of-the-art logic-bug oracles NoREC [149] and
TLP [150] to validate the queries’ results. Both are metamorphic testing ap-
proaches [32] and, given a query, derive another query whose result set is used to
validate the original query’s result. In Figure 5.1, given the three tables and the test
oracle, we generate the query SELECT * FROM t2 RIGHT JOIN t3 ON d<>0 LEFT JOIN t1

ON c=3 WHERE t1.a<>0. Since the test oracle indicates that the empty result returned
is correct, execution continues at 3⃝. If the test oracle indicates a bug, we output
the bug report and restart the testing process.

5.3.3 Query Plan Collection

We collect query plans by instrumenting queries using the EXPLAIN statement,
which is the same approach as presented in Section 5.2. In Figure 5.1, the statement
to obtain the query plan is EXPLAIN QUERY PLAN SELECT * FROM t2 RIGHT JOIN t3 ON

d<>0 LEFT JOIN t1 ON c=3 WHERE t1.a<>0. We obtain the query plan (shown in the left
part of lines 12–17 in Code 5.1), and remove table and index names.

We insert query plans into the query plan pool in which we store unique query
plans. The pool is implemented as a hash table in which the keys are query plans,
and the values are the corresponding query strings. Given a query plan, we check
whether the query plan exists in the pool, and insert it if not. In Figure 5.1, the pool
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is initially empty, so we insert the query plan (the first line at 3⃝). If no new query
plan is inserted into the pool for a fixed number of queries, we invoke 4⃝ aiming to
cause the DBMS to explore more unique query plans. Otherwise, we continue to
test the DBMS using the same database state at 2⃝. The number is configurable,
and a higher number indicates that we test the DBMS using more queries on a
single database state, while a lower one means that we test the DBMS using more
database states. The number is set to 1,000 by default, which we determined to
work well empirically.

5.3.4 Database State Mutation

If no new query plan has been observed for a fixed number of queries, we invoke
the database state mutation 4⃝, which manipulates the database state, aiming to
cause the DBMS to explore different query plans for the subsequent queries.

As mutation operators, we consider both the same DDL and DML statements
used for generating the initial database state, such as CREATE TABLE, CREATE INDEX, and
ANALYZE. A key challenge is to apply promising mutations that likely result in queries
triggering new query plans. We model this task as the Multi-Armed Bandit (MAB)
problem [57, 15], which is a popular and efficient method that has been used in
various fuzzing works [213, 174, 196, 145]. In MAB, a fixed limited set of resources
has to be allocated between competing choices to maximize the expected gain. In
our scenario, given a limited computational resource, we choose the SQL statements
(choices) to mutate database states to maximize the number of covered unique query
plans (gain).

To maximize the expected gain, an automated agent attempts to acquire new
knowledge (called “exploration”) and optimizes its decisions based on existing
knowledge (called “exploitation”). In our problem scenario, given the knowledge
that the gains of only some mutation operators have been observed, we consider
selecting the next mutation operator from either explored or unexplored mutation
operators. Making the decision based on explored mutation operators (exploitation)
tends to increase the gain, but may miss potentially higher gain from unexplored
mutation operators. Many algorithms have been proposed to strike a balance between
exploration and exploitation. We adopt the classic episode greedy algorithm [96],

85



CHAPTER 5. QUERY PLAN GUIDANCE

which chooses the operator with the highest known gain with a certain probability
and a random one otherwise.

Our algorithm works as follows. At t times when database state mutation 4⃝ is
invoked, we choose one mutation operator followed by Equation 5.1. k is the number
of candidate mutation operators. µ̂i(t) is the known gain of the mutation operator i
at time t. ϵ is a fixed probability ranging from 0 to 1; its default value is 0.7, which
we determined to work well empirically. With (1 − ϵ) probability, we choose the
operator that has the maximum known gain and randomly choose one otherwise.

j(t) =


arg maxi=1...k

(
µ̂i(t)

)
(1 − ϵ)

random(k) (ϵ)
(5.1)

Encoding known gain µ̂i. µ̂i is measured as weighted average gain—different
from the standard algorithm, which uses an unweighted average—across all iterations
where i was chosen. A DBMS is a stateful system. The database state depends
not only on the last applied mutation operator, but also on the previous database
state. Applying the same mutation operator on changing database states creates
different database states, so the gain of a mutation operator across iterations is not
independent and identically distributed. For the same mutation operator, the gain in
the last iteration is closer to the real gain in the last database state. To approximate
the known gain, we use a weight average number in which the latter gain has a higher
weight than the former gain. Equation 5.2 is our equation for updating µ̂i in each
iteration. Q is the gain for the last time i was chosen. w is the weight of Q, which
is a constant ranging from 0 to 1; its default value is 0.25, which we determined to
work well empirically. Independent from the number of iterations, the prior gains
only take up (1 −w) weight for µ̂i. For example, given w = 0.1, µ̂i(999) = 0.1, Q = 2
for the 1, 000th iteration, the µ̂i(1000) = 0.1 + (2 − 0.1) ∗ 0.1 = 0.29, which is much
higher than the unweighted average number 0.1 + (2 − 0.1)/1000 = 0.1019 and closer
to the Q. For efficiency, all parallel testing processes share the same µ̂i.

µ̂i(t+1) = µ̂i(t) + (Q− µ̂i(t)) ∗ w (5.2)

86



CHAPTER 5. QUERY PLAN GUIDANCE
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Figure 5.2: The workflow of measuring the known gain at 4⃝.

Encoding instant gain Q. Q is measured by the proportion of queries that
explore new query plans when they are executed on the latest database state. The
queries include those in the query plan pool, and a set of newly generated queries
based on the latest database state. The query plan pool includes all unique query
plans and corresponding queries, which we re-execute to evaluate how many new
query plans are explored for the same queries. To ensure that the queries in the
query plan pool are always valid, we drop the invalid ones that are due to the
changes in the database state. We observed that, in practice, this limits the pool to
a reasonable size (< 8, 000 entries). However, for some mutation operators, such
as CREATE TABLE, none of these queries is related to the newly-created table, so no
new query plan is observed. It would be unjust to judge its gain as zero, so we
generate a set of new queries and examine how many new query plans are explored.
For example, after applying the mutation operator i, 2/50 queries in the query plan
pool and 10/20 queries in the set of newly generated queries explore unseen query
plans, meaning that we compute the instant gain as Q = 2/50 + 10/20 = 0.54.

Figure 5.2 shows the workflow of measuring the known gain µ̂i at 4⃝. If the
mutation operator 3 is chosen in iteration t due to its highest j(t), we update µ̂3 in
the next iteration t+ 1 with the queries that are generated after iteration t and the
queries of the query plan pool in iteration t. Following that, we calculate j(t+ 1)
and choose the mutation operator k.

In Figure 5.1, we apply CREATE INDEX i0 ON t2 (c)WHERE c=3, which creates an
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index i0 at 1⃝. Suppose we generate the same query at 2⃝, then we observe the new
query plan shown on the right in lines 12–17 in Code 5.1 and insert it into the query
plan pool. As a result, the bug is exposed at 2⃝.

Lastly, we clear the database state after a fixed number of tested queries aiming
to maximize the number of covered unique query plans. In general, by gradually
mutating the same database state, we explore more unique and increasingly complex
database states. However, the current database state may limit the possible state
space to mutate into, which is why we clear the database state and restart the
testing process after a fixed number of tested queries. The number is configurable
and is set to a reasonable default value of 1,000,000, which we found to work well in
our experiments (see Table 5.4).

5.3.5 Implementation

We implemented the described QPG approach in SQLancer2 and subsequently
refer to our prototype as SQLancer+QPG. In addition, we updated SQLancer to
support the latest version of SQLite which has three new features, namely RIGHT JOIN,
FULL OUTER JOIN, and STRICT. We implemented our method in around 1,000 lines of
Java code and adapted each DBMS-specific component in an additional 100 lines of
Java code, such as defining the specific statements for collecting query plans. We
designed our approach to be compatible with existing testing tools; thus, for the
Database States 1⃝ and Query Generation and Validation 2⃝ steps, we reuse the
implementation of SQLancer. We implemented the algorithm described in Database
State Mutation 4⃝ as a standalone module that is reused across DBMSs. We used
DDL and DML statements supported by SQLancer as mutation operators (23
mutations for SQLite, 13 mutations for TiDB, and 17 mutations for CockroachDB)
which may contribute to covering more unique query plans, and the detailed list can
be found in our artifact. To avoid a large number of tables and indexes causing a
low testing throughput, we restricted their maximum number to an arbitrary, but
reasonable limit—a maximum of 10 tables and 20 indexes.

2https://github.com/sqlancer/sqlancer
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5.4 Evaluation
To evaluate the effectiveness and efficiency of QPG in finding bugs in DBMSs,

we seek to answer the following questions based on our prototype SQLancer+QPG:

Q.1 New Bugs. Can QPG help with finding new bugs? Are complex query plans
required to find these bugs?

Q.2 Covering unique query plans. Can QPG cover more unique query plans
than naive random generation and code-coverage guidance methods?

Q.3 Bug Finding Efficiency. Can QPG find bugs more efficiently than naive
random generation and code-coverage guidance methods?

Q.4 Sensitivity Analysis. What is the contribution of each component of QPG?
How does QPG perform under different configurations?

Tested DBMSs. We tested SQLite, TiDB, and CockroachDB. SQLite is the
most popular embedded DBMS—embedded DBMSs are built together with and
run in the same process as the application—and is used in every IOS and Android
smartphone [185]. TiDB and CockroachDB are popular enterprise-class DBMSs, and
their open versions on Github are highly popular as they have been starred more than
34.8k and 27.8k times. They are widely used and have thus also been used in other
DBMS testing works [106, 151, 150, 219]. We did not consider other popular DBMSs
due to various reasons. For example, for MySQL and closed-source DBMSs, bug
fixes can be validated only after new releases; until then, it is difficult to identify new
bugs, as already-known bugs might be repeatedly triggered. Furthermore, for some
DBMSs, such as MySQL, many previously reported bugs remain unfixed, impeding
the testing process, which was also noted in prior work [150]. As a black-box method,
QPG supports any DBMS, regardless of what programming languages it is written
in; SQLite is written in C, while TiDB and CockroachDB are written in Go. For
Q1, Q2, and Q4, we used the latest available development versions (SQLite: 3.39.0,
TiDB: 6.3.0, CockroachDB: 23.1). For Q3, to make a fair comparison, we chose the
historical versions of DBMSs that all tools have tested and can find bugs in (SQLite:
3.36.0, TiDB: 4.0.15, and CockroachDB: 21.2.2).
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Table 5.3: The number of new bugs found by SQLancer+QPG.

DBMS Crash Error Logic All
SQLite 0 5 23 28
TiDB 2 4 3 9
CockroachDB 3 11 2 16
Sum: 5 20 28 53

Baselines. We compared SQLancer+QPG with SQLancer and SQLRight. While
both of them have been designed to find logic bugs, their test case generation
techniques differ. SQLancer implements a naive random generation method. It is
the baseline on which SQLancer+QPG is built. It has been starred more than 1,000
times on GitHub and is widely used by companies. SQLRight is the state-of-the-art
tool and uses code-coverage guidance. By comparing with them, we gain insights
into the benefits of QPG against naive random generation and code-coverage-guided
methods for finding logic bugs.

Experimental infrastructure. We conducted all experiments on an Intel(R)
Xeon(R) Gold 6230 processor that has 40 physical and 80 logical cores clocked
at 2.10GHz. Our test machine uses Ubuntu 20.04 with 768 GB of RAM, and
a maximum utilization of 40 cores. We repeated all experiments 10 times for
statistically significant results.

Q.1 New Bugs

We ran SQLancer+QPG for approximately two months—during which we also
implemented the approach—aiming to find bugs. To better demonstrate the under-
lying issue for each bug found, we minimized the test case both using C-Reduce[146]
and manually. After reporting the bugs to the developers, we suspended the testing
process until the bug was fixed to avoid duplicate reports whenever possible; when
bugs were not fixed within a timespan of weeks, we reported multiple bugs that we
suspected to be unique. The bugs in SQLite were usually fixed within 24 hours,
while the bugs in TiDB and CockroachDB were usually fixed within several weeks.
As a result, we focused on testing SQLite. We used NoREC [149] and TLP [150],
which are the state-of-the-art oracles supported by both SQLancer and SQLRight.
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Code 5.2: A bug in the RIGHT JOIN feature of SQLite.
1 CREATE TABLE t1(a CHAR);
2 CREATE TABLE t2(b CHAR);
3 INSERT INTO t2 VALUES(’x’);
4 CREATE TABLE t3(c CHAR NOT NULL);
5 INSERT INTO t3 VALUES(’y’);
6 CREATE TABLE t4(d CHAR);
7
8 SELECT * FROM t4 LEFT OUTER JOIN t3 ON TRUE INNER JOIN t1 ON t3.c=’’ RIGHT

OUTER JOIN t2 ON t3.c=’’ WHERE t3.c ISNULL; -- {} , {|||x}

Bugs overview. Table 5.3 shows the number of unique, previously unknown
bugs found by SQLancer+QPG. We found 53 bugs in total, all of which have been
confirmed. Of these, 46 have already been fixed. Although SQLancer had been
extensively applied to these DBMSs, we were still able to find these bugs with the
help of QPG. Of the 53 bugs, 28 were logic bugs found by the test oracles TLP
and NoREC , and 25 bugs were associated with crashes or internal errors. This
demonstrates that the complex database states generated by QPG are beneficial not
only to finding logic bugs, but also to other kinds of bugs. Although CockroachDB
used the TLP oracle in their Continuous Integration (CI) process,3 we still found
16 previously unknown bugs using QPG. For the new features in SQLite, QPG
found 13 bugs in RIGHT JOIN, 2 bugs in FULL JOIN, and no bug in STRICT. We give two
examples of found bugs as follows.

Example 1: a bug in the RIGHT JOIN feature. Code 5.2 shows a test case
exposing a logic bug that we found in SQLite. The SELECT statement incorrectly
returns an empty result, because of an incorrect optimization of ISNULL when used
with a RIGHT JOIN. The query plan of the SELECT statement is six operations long:
scanning all tables once in four operations, and joining table t2 with another scan
on t2 in two operations. The query plan is relatively long, because joining tables
typically involves multiple operations. 13 bugs in SQLite were in the RIGHT JOIN

feature, in which QPG generates more complex database states to find bugs.

Example 2: a bug in JSON feature. Code 5.3 is another logic bug that had
existed in SQLite since July 23, 2016. The SELECT statement incorrectly returns an
empty result because of an incorrect optimization of the json_quote function in the

3https://github.com/cockroachdb/cockroach/commit/777382e6
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Code 5.3: A bug in json_quote function of SQLite.
1 CREATE TABLE t1 (a CHAR);
2 CREATE VIEW v1(b) AS SELECT json(TRUE);
3 INSERT INTO t1 VALUES (’x’);
4
5 SELECT * FROM v1, t1 WHERE NOT json_quote(b); -- {} , {1|x}

Table 5.4: Query Plans of the queries in newly found bugs.

DBMS All Unique Length
SQLite 51 29 5.55
TiDB 12 9 5.67
CockroachDB 6 6 7.83

Avg: 6.35

context of a VIEW, which is necessary to find the bug. The bug cannot be found if the
second line is replaced by CREATE TABLE v1(b)AS SELECT json(1). In SQLite, we found
three bugs that had been hidden for more than six years, and SQLancer+QPG is
the first tool to find them despite extensive efforts by the authors of SQLancer and
SQLRight.

The uniqueness and complexity of query plans. To better understand how
and whether QPG enables exploring a variety of query plans, we analyzed the query
plans of the queries in Table 5.3. In total, we obtained 69 query plans, of which
63.77% are unique. This further demonstrates the diversity of query plans. On
average, the length of query plans of queries was 6.35. In comparison with Table 5.2,
where the average number of operations in a query plan was 2.59, more complex
query plans are required to expose these newly found bugs, and QPG was successful
in causing them to be generated.

With the help of QPG, we found 53 unique, previously unknown bugs where the
average length of query plans of queries is 6.35.

Q.2 Covering Unique Query Plans

We evaluated whether SQLancer+QPG can cover more unique query plans than
SQLancer and SQLRight in 24 hours. Our study in Section 5.2 shows that query
plans in previously found bugs are diverse, so covering more unique query plans
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Figure 5.3: The average number of unique query plans across 10 runs in 24 hours.

Table 5.5: The average and median number of query plan lengths across 10 runs in
24 hours.

SQLancer SQLRight SQLancer+QPG
DBMS Avg Median Avg Median Avg Median
SQLite 2.95 2.00 2.17 1.00 4.69 4.00
TiDB 3.97 2.00 - - 15.04 8.20
CockroachDB 4.55 4.00 - - 8.87 6.90
Avg: 3.82 2.67 2.17 1.00 9.53 6.37

likely increases the probability of finding bugs. We designed SQLancer+QPG to
explore more unique and complex query plans than SQLancer. We used the TLP
oracle, which is the only test oracle that is supported by all DBMSs we considered.

Measurements. Figure 5.3 shows the average number of unique query plans
covered by all tools across 10 runs in 24 hours. We recorded the query plans every
15 minutes and removed the names of tables, views, and indexes as described in
Section 5.2. For TiDB and CockroachDB, we could run SQLancer+QPG at most for
6 hours, because SQLancer+QPG found several crash bugs that remained unfixed
during our evaluation. We could run SQLRight only on SQLite, as SQLRight does
not support TiDB and CockroachDB. Table 5.5 shows the average and median
lengths of query plans of the queries executed across 10 runs in 24 hours.
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Table 5.6: The line and branch coverage across 10 runs in 24 hours.

SQLancer SQLRight SQLancer+QPG
DBMS Line Branch Line Branch Line Branch
SQLite 30.3% 22.7% 48.1% 38.9% 32.6% 24.4%

Results. On both metrics, the number of unique query plans and their complexity,
SQLancer+QPG clearly outperforms SQLancer and SQLRight. SQLancer+QPG
exercises 4.85–408.48× more unique query plans than SQLancer and 7.46× more
than SQLRight. CockroachDB provides fine-grained query plans, which is why
SQLancer+QPG most clearly outperformed SQLancer on this DBMS. The growth
rate of SQLancer+QPG in TiDB stagnates at around 5 hours due to a crash bug
that terminated the TiDB server process. Table 5.5 shows that the average length of
query plans in SQLancer+QPG is 1.59–3.79× longer than for SQLancer, and 2.16×
longer than for SQLRight. Only 6 hours are shown for TiDB and CockroachDB
because of crashes. To mitigate randomness, we measured the Vargha-Delaney[171]
(Â12) and Wilcoxon rank-sum test[109] (U) of SQLancer+QPG against SQLancer.
Â12 measures the effect size and gives the probability that random testing of
SQLancer+QPG is better than random testing of SQLancer (i.e., Â12 > 0.5 means
SQLancer+QPG is better). The Wilcoxon rank sum test U is a non-parametric
statistical hypothesis test to assess whether the result differs across both tools.
We reject the null hypothesis if U < 0.05, that is, SQLancer+QPG outperforms
SQLancer with statistical significance. For both metrics, Â12 = 1 and U < 0.05
for SQLancer+QPG against SQLancer on all DBMSs. The results show that our
algorithm continuously generates significantly more unique and complex database
states for testing.

QPG exercises 4.85–408.48× more unique query plans than a naive random
generation method and 7.46× more than a code-coverage guidance method.

Code coverage. While we were primarily interested in covering more unique
query plans, code coverage is a common metric of interest that also gives some
insights on how much of a system might be tested. Thus, we evaluated the line and
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Table 5.7: The number of all and unique bugs found across 10 runs.

SQLancer SQLRight SQLancer+QPG
DBMS All Unique All Unique All Unique
SQLite 2 1 2 1 4 2
TiDB 56 10 - - 118 12
CockroachDB 4 2 - - 8 3
Sum: 62 13 2 1 130 17

branch coverage of all three tools. Since TiDB and CockroachDB are written in Go,
which is not supported by SQLRight, we measured code coverage only for SQLite.
Table 5.6 shows the average percentage of line and branch coverage across 10 runs
in 24 hours. Although SQLancer+QPG does not aim to maximize code coverage,
SQLancer+QPG still outperforms SQLancer on both line coverage and branch
coverage because of more unique query plans covered. SQLRight clearly achieves
the highest coverage. The reasons for this are that 1) SQLRight was designed
to increase code coverage, 2) SQLancer and SQLancer+QPG only generate SQL
statements for the core logic of DBMS, while SQLRight produces all kinds of SQL
statements by parsing the grammar files from DBMSs, and 3) SQLRight provides
high-quality seeds that already cover 34.1% line coverage and 26.4% branch coverage,
outperforming the other tools even without mutations. Since SQLite achieves 100%
branch coverage in their internal testing,4 we believe that higher code coverage has
a limited contribution to finding logic bugs.

Q.3 Bug Finding Efficiency

We evaluated whether SQLancer+QPG finds bugs faster than SQLancer and
SQLRight. To this end, we ran SQLancer+QPG, SQLancer, and SQLRight for 24
hours with the TLP oracle. We used a best-effort method to distinguish unique bugs
by checking whether 1) stack traces are the same (crash bugs); 2) error messages
are the same (error bugs); 3) SQL clause structures are the same (logic bugs), such
as two bugs’ queries that only have RIGHT JOIN and GROUP BY clauses are deemed to
be duplicate bugs.

4https://www.sqlite.org/testing.html#mcdc
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Table 5.7 shows the sum of all bugs and only assumed-unique bugs found by
each tool in 24 hours and 10 runs. Since crash bugs terminate the whole process,
all experiments concluded in less than 24 hours until the first crash was observed
(SQLite: 9 hours, TiDB: 1 hour, and CockroachDB: 16 hours). We did not restart
the testing process as this would disadvantage SQLancer+QPG by making it lose
the database states. Overall, SQLancer+QPG found 2× more bugs and 1.4× more
unique bugs than SQLancer; 65× more bugs and 17× more unique bugs than
SQLRight. As duplicate bugs significantly slow down the testing process and hinder
finding other bugs, the number of unique bugs is much smaller than the number
of all bugs. In TiDB, we found several easy-to-reach bugs in JOINs, which do not
require complex database states, so the number of all bugs is much higher than for
the others. The results further show that bugs can be more efficiently found by
exploring more unique query plans.

QPG finds previous bugs 1.4× faster than a naive random generation method
and 17× faster than a code-coverage guidance method.

Q.4 Sensitivity Analysis

To evaluate the contribution of SQLancer+QPG’s components, we performed a
sensitivity analysis.

Contributions of algorithm components . Our major contributions are query
plan collection 3⃝ and database state mutation 4⃝ shown in Figure 5.1. To assess
their contributions, we derived a new configuration SQLancer+QPGr that enables
only the query plan collection 3⃝, and randomly applies mutations in 4⃝. Figure 5.4
shows the average number of covered unique query plans across 10 runs in 24
hours with the TLP oracle. SQLancer+QPG outperforms SQLancer + QPGr,
demonstrating the contribution of 4⃝. SQLancer +QPGr outperforms SQLancer,
demonstrating the contribution of 3⃝. SQLancer+QPG has a higher growth rate
than SQLancer+QPGr, because 4⃝ gradually learns which mutation operators are
promising. Due to the crash bugs, we ran TiDB and CockroachDB for only 6 hours.
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Figure 5.4: The average number of covered unique query plans to evaluate the
contributions of algorithm components across 10 runs in 24 hours.
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Figure 5.5: The average number of covered unique query plans by the NoREC oracle
across 10 runs in 24 hours. The y-axis uses a log scale.
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Figure 5.6: The average number of covered unique query plans by varying the
maximum number of queries per database state across 10 runs in 24 hours.

Sensitivity of oracles. We also evaluated SQLancer+QPG with NoREC , which
is the second state-of-the-art oracle. Figure 5.5 shows the average number of covered
unique query plans across 10 runs in 24 hours for the NoREC oracle. SQLancer
lacks a NoREC oracle for TiDB, so we exclude it here. All tools have a higher
number of covered unique query plans with the NoREC than with the TLP oracle,
because of different constraints on queries from NoREC and TLP. Similar to TLP,
SQLancer+QPG gains a significant advantage over SQLancer and SQLRight with
the NoREC oracle.

Sensitivity of maximum queries per database . Both SQLancer+QPG and
SQLancer have a configuration to control the number of tested queries before clearing
database states and starting a fresh testing instance. The default value for both
is 1,000,000. Often, starting a fresh testing instance at 1⃝ may result in a higher
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Figure 5.7: How often a mutation was executed for the five most frequently executed
mutations for SQLite, TiDB, and CockroachDB across 10 runs.

number of covered unique query plans. To evaluate whether SQLancer+QPG still
performs well when more frequently resetting database states, we adjusted the
number to 10,000 and 100,000, and evaluated the number of their covered unique
query plans. Figure 5.6 shows the average number of covered unique query plans
under the various maximum number of queries per database state. SQLancer+QPG
gains a significant advantage over SQLancer in all experiments. We clearly see that
the rate of newly discovered query plans of SQLancer stagnates over time, while
SQLancer+QPG’s rate continues to increase. Configuring the number is a trade-off
since SQLancer+QPG creates more complex query plans with a higher number of
maximum queries per database state and more unique query plans with a lower
number. A user can adjust the configuration option depending on the testing goals.

Sensitivity of mutations. To evaluate the contribution of each mutation, we
examined how often each mutation (i.e., SQL statement) was executed across 10 runs
in 24 hours. Figure 5.7 shows the five most frequently executed mutations for each
DDBMS. The most frequently-executed mutation for SQLite is CREATE TABLE. Other
frequently executed mutations either create other kinds of tables that are unique
to SQLite or change the schema of existing tables using ALTER. This is expected,
as more kinds of tables subsequently cause SQLite to explore more query plans.
Despite frequently creating additional tables, we did not observe excessive execution
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times, as we limited the maximum number of tables and indexes. For TiDB and
CockroachDB, the number of mutations is much lower than that for SQLite, as
we could run them for only up to 6 hours. QPG favors the mutation CREATE INDEX

for TiDB, because indexes allow it to use more efficient physical operators when
reading data. For CockroachDB, QPG favors the mutation SET SESSION, because it
changes the system options, which can have an impact on the query plan. QPG
favors creating tables as various types of tables are supported in SQLite. Overall,
all DBMSs have common frequent mutations, such as CREATE TABLE, yet have distinct
frequent mutations, such as SET, depending on the various characteristics of DBMS.

For all three analyses, Â12 = 1 and U < 0.05 for SQLancer+QPG against
SQLancer on all DBMSs, which indicates the results are statistically significant.

5.5 Conclusion
In this chapter, we have proposed the concept of Query Plan Guidance (QPG)

for the problem of test case generation to efficiently detect logic bugs in DBMSs.
Its core insight is that the DBMS’ internal execution logic for a given query is
reflected by its query plan and, therefore, covering more unique query plans might
increase the likelihood of finding logic bugs. Our study shows that the query plans
of the queries in previously found bugs vary significantly, but are simple. Thus,
we designed an algorithm to gradually mutate database states toward more unique
and complex query plans. QPG enabled us to find 53 unique, previously unknown
bugs in widely-used and extensively-tested database systems—SQLite, TiDB, and
CockroachDB. The experiments show that QPG results in 4.85–408.48× more unique
query plans than a random-generation method and 7.46× more than a code coverage-
guidance method. QPG also improves logic-bug finding efficiency by 2×. Overall,
this work has demonstrated that QPG is a general-applicable, black-box approach
that increases bug-finding efficiency and enables finding difficult-to-trigger bugs.
While we demonstrated QPG in the context of automated testing, we believe that
the core idea could be applied also in other contexts (e.g., to measure the quality of
a test suite).
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5.6 Data Availability
Our implementation and experimental data are publicly available at https:

//zenodo.org/record/7553013.
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Chapter 6

Unified Query Plan Representation

We presented three testing methods based on query plans. However, in practice,
query plans are represented in a database-specific manner, making it challenging
to efficiently build potentially widely applicable applications. In this chapter, we
present an exploratory case study to investigate query plan representations in nine
widely-used database systems and propose a Unified query plan representation
(UPlan). This work has been submitted to the 47th International Conference on
Software Engineering (ICSE 2025) [88].

6.1 Introduction
DBMSs expose query plans to software developers and programs in various

formats (e.g., in textual format), in which case we refer to them as serialized
query plans. Query plans and thus serialized query plans are specific to DBMSs,
as they reflect their internal execution steps, which might differ widely across
DBMSs. To exacerbate the issue, unlike query languages, for which widely-used,
standardized [67], and formalized [65] languages exist, such as the Structured Query
Language (SQL) [191], the formats in which serialized query plans are exposed are
non-standardized and DBMS-specific. For example, a predicate in the WHERE clause
of SQL corresponds to a concrete step to filter data in the query plans of TiDB [23],
but corresponds to a property of another step to scan tables in the query plans of
PostgreSQL [186]. Overall, we refer to the different ways in which serialized query
plans are represented as query plan representations.

The plethora of different representations makes it challenging to build general
applications on serialized query plans. One common application that uses them is
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visualization tools for query plans. Visualization tools visualize serialized query plans,
aiming to help users understand and analyze query plans, which is a non-trivial task
as highlighted by PostgreSQL developers as follows. Due to the DBMS-specific query
plan representations, a visualization tool is typically specific to a DBMS, such as
pgMustard1 and PEV22 for PostgreSQL, and Workbench3 for MySQL, rather than
supporting multiple DBMSs. Importantly, automated testing approaches for DBMSs
also utilize query plans. As we presented in previous chapters, Query Plan Guidance
(QPG) [85] uses them as a feedback metric, while Cardinality Estimation Restriction
Testing (CERT) [86] uses them as part of its test oracle to find performance issues.
However, due to DBMS-specific query plan representations, QPG and CERT were
implemented in a DBMS-specific way, which is time-consuming and error-prone.

"Plan-reading is an art that requires some experience to master, [...]"a

ahttps://www.postgresql.org/docs/14/using-explain.html

In this chapter, we systematically study query plan representations. We present
an exploratory case study [154], which is a method to investigate a phenomenon in
depth, including both qualitative and quantitative research methods. We collected
documents, source code, and third-party applications of the query plans in nine
popular DBMSs across five different data models, and summarized the commonalities
and differences of query plan representations. Our study shows that query plan
representations are based on three conceptual components: operations, properties,
and formats. Based on the study, we designed a unified query plan representation,
which allows the representation of all conceptual components we studied from
DBMS-specific query plans.

To demonstrate the utility of the unified query plan representation, we imple-
mented a prototype called UPlan to maintain the unified representation, and show
three applications based on it. First, we modified a visualization tool to support our
unified query plan representation. The results show that existing visualization tool
implementations for a specific DBMS could support at least five DBMSs through
UPlan with only moderate implementation effort. Second, we re-implemented QPG

1https://www.pgmustard.com/
2https://explain.dalibo.com/about
3https://dev.mysql.com/doc/workbench/en/wb-performance-explain.html
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and CERT in a DBMS-agnostic way based on UPlan, enabling the large-scale adop-
tion of both testing methods. We found 17 previously unknown and unique bugs in
MySQL, PostgreSQL, and TiDB, and 1 bug in the original QPG implementation
when parsing TiDB’s query plans. Last, the unified query plan representation
enables the comparison of query plans in different DBMSs, which provides actionable
insights for query optimization. We hope that our unified representation reduces
the effort to build applications on serialized query plans. We include all study
results and the prototype in our supplementary materials. In addition, we provide a
comprehensive website, which provides supportive additional information including
illustrative examples, explanations of studied query plans, and example applications.

Overall, we make the following contributions:

• A study of query plan representations and results that are publicly available,
allowing both practitioners and researchers to study the results.

• A proposal of a unified query plan representation.

• A reusable library UPlan for maintaining the unified query plan representation.

• Three examples of how such a representation facilitates the applications on
serialized query plans.

6.2 Query Plan Case Study
We adopted an exploratory case study as the method to investigate query plan

representations. The case study, as an empirical method, is used for investigating
a contemporary phenomenon in depth and within its real-world context [153] (the
"case"). An exploratory case study is a specific case study that generates new
questions, propositions, or hypotheses during the study. In this paper, we chose
this method, because we wanted to gain an in-depth understanding of how query
plans are represented within mature DBMSs. We followed common guidelines of
case study research [154] to design and conduct this study.
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Table 6.1: The studied nine popular DBMSs ranging from various data models,
development modes, and release dates.

DBMS Version Data Model Release Rank
InfluxDB [7] 2.7.0 Time-series 2013 28
MongoDB [130] 6.0.5 Document 2009 5
MySQL [44] 8.0.32 Relational 1995 2
Neo4j [143] 5.6.0 Graph 2007 22
PostgreSQL [186] 14.7 Relational 1989 4
SQL Server [178]1 16.0.4015.1 Relational 1989 3
SQLite [136]2 3.41.2 Relational 1990 10
SparkSQL [115]3 3.3.2 Relational 2014 37
TiDB [23] 6.5.1 Relational 2016 107

1 Commercial DBMS.
2 Embedded DBMS.
3 Analytics engine.

6.2.1 Case Study Design

Objectives and research questions. The goal of this study was to investigate
the phenomenon of non-standardized query plan representations within real-world
DBMSs. We aim to achieve this goal by answering the following research questions
(RQs):

RQ.1 How are serialized query plans represented?

RQ.2 Do query plan representations share a common conceptual basis?

Case selection. The case study of this paper is characterized as single-case [154]:
the query plan representation is the case, while different DBMSs are the units of the
analysis. Table 6.1 shows the DBMSs that we selected for the study. To conduct
a representative and comprehensive study, we made a diverse selection of DBMSs.
First, we chose DBMSs of various data models: relational, document, graph, and
time-series data models, based on the assumption that the DBMSs of different
models might have different query plan representations. The relational data model is
the most widely-used one [37], and other non-relational models, which are also called
NoSQL models, are widely used for maintaining unstructured or semi-structured
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data [163]. Then, we chose both classic and new-generation DBMSs [135] ranging
from release years from the 1980s to the 2010s. The architectures of the chosen
DBMSs include standalone DBMSs and an embedded DBMS, SQLite, which runs in
the same process as the application. We included both a commercial DBMS, SQL
Server, and open-source DBMSs. Apart from conventional DBMSs, we included
an analytics engine for large-scale data processing, SparkSQL, which also optimize
queries. To choose widely-used DBMSs for study, we chose them referring to the
DBMS ranking website4 as shown in the column Rank. We chose the latest release
version of each DBMS.

Data collection. We collected data from multiple sources: documents, source code,
officially integrated development environments (IDEs), and third-party applications
based on query plans. The use of multiple data sources allowed us to perform data
source triangulation [154], that is, we could confirm the study results from the above
four different types of data sources. We included detailed lists of the data sources in
the supplementary materials for reference.

Data analysis. For each DBMS, we first examined its official documents describing
its query plan representation. If the source code was available, we inspected the
relevant source code to gain a better understanding of query plan representations. We
also ran official test cases in the official IDEs to observe query plan representations in
real-world test cases. For the DBMSs that had open-sourced query plan applications,
we further examined how query plan representations are explained and utilized
from a third-party perspective. To answer RQ.1, we analyzed the query plan
representations from the above data sources qualitatively. To answer RQ.2, we
qualitatively identified conceptual components in the query plan representations, and
quantitatively compared these components. To satisfy observation triangulation [154],
one author conducted the study, and another author validated the finding against
the raw data.

4https://db-engines.com/en/ranking as of July 2023.
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Code 6.1: Query plan examples of PostgreSQL and SQLite in text format.
1 CREATE TABLE t0 (c0 INT);
2 CREATE TABLE t1 (c0 INT);
3 CREATE TABLE t2 (c0 INT PRIMARY KEY);
4 INSERT INTO t0 SELECT * FROM generate_series(1,1000000);
5 INSERT INTO t2 SELECT * FROM generate_series(1,100);
6
7 ---------------------------------PostgreSQL----------------------------------
8 EXPLAIN (SUMMARY TRUE) SELECT t1.c0 FROM t0 INNER JOIN t1 ON t0.c0 = t1.c0

WHERE t0.c0 < 100 GROUP BY t1.c0 UNION SELECT c0 FROM t2 WHERE c0 < 10;
9

10 HashAggregate (cost=62998.82..63009.32 rows=1050 width=4)
11 Group Key: t1.c0
12 ->Append (cost=27150.40..62996.20 rows=1050 width=4)
13 ->Group (cost=27150.40..62949.08 rows=200 width=4)
14 Group Key: t1.c0
15 ->Gather Set (cost=27150.40..62948.08 rows=400 width=4)
16 Workers Planned: 2
17 ->Group (cost=26150.38..61901.89 rows=200 width=4)
18 Group Key: t1.c0
19 ->Set Join (cost=26150.38..56906.48 rows=1998164 width=4)
20 Set Cond: (t0.c0 = t1.c0)
21 ->Sort (cost=25970.60..26362.39 rows=156719 width=4)
22 Sort Key: t0.c0
23 ->Parallel Seq

Scan on t0 (cost=0.00..10301.95 rows=156719 width=4)
24 Filter: (c0 < 100)
25 ->Sort (cost=179.78..186.16 rows=2550 width=4)
26 Sort Key: t1.c0
27 ->Seq Scan on t1 (cost=0.00..35.50 rows=2550 width=4)
28 ->Bitmap Heap Scan on t2 (cost=10.74..31.37 rows=850 width=4)
29 Recheck Cond: (c0 < 10)
30 ->Bitmap Index Scan on t2_pkey (cost=0.00..10.53 rows=850 width=0)
31 Index Cond: (c0 < 10)
32 Planning Time: 0.124 ms
33
34 -----------------------------------SQLite-----------------------------------
35 EXPLAIN QUERY PLAN SELECT t1.c0 FROM t0 INNER JOIN ...;
36
37 ‘--COMPOUND QUERY
38 |--LEFT-MOST SUBQUERY
39 | |--SCAN t0
40 | |--SEARCH t1 USING AUTOMATIC COVERING INDEX (c0=?)
41 | ‘--USE TEMP B-TREE FOR GROUP BY
42 ‘--UNION USING TEMP B-TREE
43 ‘--SEARCH t2 USING COVERING INDEX sqlite_autoindex_t2_1 (c0<?)
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6.2.2 Findings Overview

We found that the studied DBMSs share three conceptual components: operations,
properties, and formats. Operations are concrete steps executed by DBMSs to retrieve,
process, or output data in response to a query, such as Full Table Scan, which refers
to the step to scan an entire table. While, query plans are considered DAGs, we
found that, in practice, all operations in serialized query plans are organized in a tree
structure, and each operation takes the output of its children as input and produces
a new output that contains an intermediate result. The root operation produces
the result of the whole query. Each operation is associated with zero or multiple
properties, which involve operation-related information, such as row, which refers to
the estimated number of rows returned. Apart from operation-associated properties,
plans also have properties associated with them, such as planning time, which refers
to the time to generate the query plan. DBMSs typically allow serializing query
plans in various formats, such as text, table, JSON, and XML. We detail each
conceptual component in the next subsections.

Code 6.1 shows two examples of query plan representations of PostgreSQL and
SQLite in a textual format. Lines 1–5 show the SQL statements that create and
populate the tables. The function generate_series generates data to populate tables
t0 and t2. For PostgreSQL, executing the statement in line 8 outputs the serialized
query plan as shown in lines 10–32. (SUMMARY TRUE) in line 8 specifies the output of
plan-associated properties in line 32. For SQLite, executing the statement in line 35
outputs the serialized query plan as shown in lines 37–43. The bold texts denote
operations, and the non-bold texts denote properties. For example, the operation
HashAggregate in line 10 has the properties cost, rows, width, and Group Key. The
tree structure is denoted through hierarchical indents, in which the operation with
longer indents is a child of the operation with short indents. Although both DBMSs
are based on the relational data model, and support a textual format, their query
plan representations are significantly different.
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Table 6.2: The number of operations in query plan representations.

DBMS Producer Bag Join Folder Projector Executor Consumer Total

InfluxDB 0 0 0 0 0 0 0 0
MongoDB 14 9 0 5 3 10 3 44
MySQL 15 3 2 1 0 2 0 23
Neo4j 18 11 43 6 3 17 13 111
PostgreSQL 18 8 3 3 0 9 1 42
SQL Server 15 3 3 3 0 16 19 59
SQLite 3 6 3 0 0 5 0 17
SparkSQL 7 1 2 6 0 43 18 77
TiDB 19 6 7 5 1 13 5 56
Avg: 12 5 7 3 1 13 7 48

Table 6.3: The number of properties in query plan representations.

DBMS Cardinality Cost Configuration Status Total

InfluxDB 5 0 0 1 6
MongoDB 16 5 18 12 51
MySQL 3 6 3 10 22
Neo4j 3 3 12 7 25
PostgreSQL 8 17 42 40 107
SQL Server 4 4 7 3 18
SQLite 0 0 3 0 3
SparkSQL 11 11 0 0 22
TiDB 2 5 4 1 12
Avg: 6 6 10 8 30

6.2.3 Operations

Identification. We identified operations from the source code. MongoDB, MySQL,
PostgreSQL, and TiDB specify operations in enumeration variables or lists. Neo4j
and SparkSQL define each operation as a class or structure. SQLite defines operations
as strings that are passed to the query plan generation process. We found that only
SQL Server and Neo4j provided detailed documents for operations, while the other
DBMSs’ documents had incomplete lists of operations, and relied on illustrative
examples.

Classification. We classified operations into seven categories, as shown in the left
part of Table 6.2. On average, every DBMS defines 48 operations in query plans.
Neo4j has the most operations, while SQLite has the fewest operations. We noticed
that Neo4j requires more operations on nodes and relationships of the graph data
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model, such as the operation to set node properties,5 and SQLite is a lightweight
DBMS with a limited number of operations, such as lacking the operations for
creating tables. Overall, NoSQL DBMSs have more operations than relational
DBMSs. An exception is InfluxDB, which does not define operations. InfluxDB’s
operations are disregarded in query plans due to the limited set of operations
supported by the single-entity time-series data.

Terminology. We define the operation categories through the following terms.
Recall that data models organize data in entities and attributes, so we represent
an entity E = {a1, a2, ..., an}, in which a is an attribute, and represent a multiset6

of entities D = {E1, E2, ..., En}. Oc(input) = output represents that an operation
O of the category c receives input from children operations and produces output
to the parent operation. Considering that many operations might apply to varying
numbers of children, we chose to model the input from all children as a single input.
We give a detailed explanation of each operation category as follows.

Producer. The Producer category consists of the operations that retrieve data
from storage or return constants instead of from children’s operations. We denote
them as OP roducer() = Do. The operations in the Producer category are data sources
of queries, so they are typically leaf nodes of query plans. For example, in Code 6.1,
the operation SEARCH in line 43 represents a full table scan, and Bitmap Heap Scan

in line 28 represents a data scan from bitmaps in heap memory. Six of nine DBMSs
define more than ten operations in the Producer category, because reading data is
usually expensive, and thus reads are customized for different scenarios aiming to
improve efficiency. For example, indexes [71, 99] can be used to efficiently read data.

Bag. The Bag category consists of the operations that change the permutation
and combination of entities, such as sort and union, with no changes to attributes.
We denote them as OBag({Ei|Ei ∈ Di}) = {Eo|Eo ∈ Do, Do ⊆ Di}. In Code 6.1, the
operation Append of PostgreSQL merge entities from different children operations
to a single set by the operations in lines 13 and 28, and is associated with query

5https://neo4j.com/docs/cypher-manual/current/execution-plans/operators#query-
plan-set-node-properties-from-map

6A collection of elements in which elements may occur more than once.
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Table 6.4: An example query plan of the Neo4j operations of the Join category.
Planner COST
Runtime version 5.10
Operator Rows ...
+ProduceResults 8 ...
+UndirectedRelationshipIndexContainsScan 8 ...
Total database accesses: 5, total allocated memory: 184

clause UNION in line 8. To execute a similar functionality in SQLite, the operations
COMPOUND QUERY and UNION together combine data objects by the operations
in lines 37 and 42, and both operations are also in the Bag category.

Join. The Join category consists of the operations that generate new entities
by recombining attributes. We denote them as OJoin({Ei|Ei ∈ Di}) = {Eo|∀ao ∈
Eo, ao ∈ Do, Do ⊆ Di}. In Code 6.1, the operation Set Join in line 19 combines
two ordered data from the operations in lines 21 and 25 based on the common
fields t0.c0 and t1.c0. MongoDB has no Join operations, because it includes only
a single document entity for querying and lacks support for combining data from
multiple documents. Neo4j has 34 operations, while other DBMSs have less than
10 operations, because we classified the operations on the edges of the graph data
model as belonging to the Join category. In the graph data model, edges establish
relationships between nodes, and a broader range of operations can be performed on
the edges. For example, in Neo4j, executing the simple query MATCH ()-[r]->()WHERE

r.title ENDS WITH ’developer’RETURN r retrieves the relationships whose properties
satisfy r.title ENDS WITH ’developer’. The corresponding query plan is shown in
Table 6.4. Each line in the table represents an operation and associated properties,
and the content outside the table is plan-associated properties. The query plan
scans the relationships, which indicates both nodes (i.e., entities) each relationship
connects, so the operation UndirectedRelationshipIndexContainsScan belongs to the
Join category.

Folder. The Folder category consists of the operations that derive new entities from
a set of entities. Formally, we denote them as OF older({Ei|Ei ∈ Di}) = {Eo|Eo =
ψ(Do), Do ⊆ Di}, in which ψ() denotes a function, such as MAX(). In Code 6.1,
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the operations HashAggregate and Group are in the Folder category and represent
data aggregation and grouping, respectively. SQLite does not define operations
in the Folder category, but shows similar information in properties together with
the operations in the Producer category. The operations in the Folder denote
DBMSs’ data transformation capability, so most DBMSs support operations in
Folder category.

Projector. The Projector category consists of the operations that remove at-
tributes from all entities. Formally, we denote them as OP rojector({Ei|Ei ∈ Di}) =
{Eo|Eo ⊆ Ei}. No operation in Code 6.1 belongs to this category, and 6 of 9 DBMSs
have no operations in this category. We observed that these operations correspond
to SELECT clauses, and they are not explicitly denoted in query plans.

Executor. The Executor category consists of the operations that make no change
to entities and attributes. We denote them as OExecutor(Di) = {Do|Do = Di}. In
Code 6.1, the operation Gather Set in line 15 merges the data from the operation
Group running in other computing nodes for a distributed architecture. DBMSs de-
fine these operations to cater to various designs and goals. For example, PostgreSQL
defines the operation MEMORIZE to cache the output from node children into
memory to speed up processing. We classified these operations into the Executor
category. The average number of operations in the Executor category is 13, and
SparkSQL has significantly more operations, 43, in the Executor category than
others, because it defines multiple operations to interact with other components,
such as the Python library pandas.

Consumer. The Consumer category consists of operations that have no output.
We denote them as OConsumer(Di) = {}. Apart from queries, which, in the SQL, are
SELECT statements, DBMSs also support other statements, such as CREATE and UPDATE

in SQL. DBMSs also expose query plans for these statements, and name them as
execution plans for wider usage.7 The operations of the Consumer category usually
modify stored data or system variables. For example, SparkSQL uses the operation
SetCatalogAndNamespace to control a particular system variable, and we assigned

7https://neo4j.com/docs/cypher-manual/5/execution-plans/
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these operations to the Consumer category.

6.2.4 Properties

Identification. Each property is associated with either an operation or a query
plan, and the available properties are statically encoded as strings near the generation
processes of associated operations or query plans in the source code. InfluxDB’s
query plan representation includes only a list of plan-associated properties, while
other DBMSs include both plan-associated and operation-associated properties.
In Code 6.1, PostgreSQL’s operations have various general properties enclosed in
brackets, along with operation-specific properties in the subsequent lines. At the
bottom of the serialized query plan, the property Planning Time is plan-associated
and represents the time to produce the query plan. In the documentation, similar
to operations, only SparkSQL provides a comprehensive list of properties, while
other DBMSs only show examples of properties. We explain that it is difficult
to maintain the documentation of properties, which are diverse and evolving over
versions. To maintain the information of properties, some third-party tools, like
pgMustard, maintain a curated list of properties with accompanying explanations,
but are usually commercial.

Classification. We identified four categories of properties, as shown in the right
part of Table 6.3. On average, every DBMS defines 30 properties. PostgreSQL has
the most properties, since it includes many fine-grained properties. For example,
it defines three properties to show the status of parallel computations: worker

number, worker launched, and worker planned, while other DBMSs provide at most one
property for parallel computation. Some properties in a DBMS may be operations
in another DBMS, we classified them according to the definition in most DBMSs.
For example, in Code 6.1, the property Filter in line 24 represents the predicates
to exclude data, while TiDB denotes a filter in an operation Select. Because 5 of 9
DBMSs denote filters in properties, we classified the operation in TiDB also into
properties. We give a detailed explanation of each property category as follows.
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Cardinality. The Cardinality category consists of the numeric properties that
denote the estimated data size returned by operations. The properties in this
category can be associated with operations of any category or the serialized query
plan as a whole. In Code 6.1, the properties rows and width belong to the Cardinality
category and represent the estimated number of returned rows and width. These
estimates are derived from statistical information [80] that DBMSs collect, such as
the total number of rows and maximum values. Query plans with lower estimated
cardinalities are more likely to be selected for execution during cost-based query
optimization. Some DBMSs, such as MySQL, provide more fine-grained information
about the number of rows that are read and returned. As a lightweight DBMS,
SQLite uses simple heuristics to estimate cardinalities, and omits properties in the
Cardinality category.

Cost. The Cost category consists of the numeric properties that denote the
estimated resource consumption. The properties in this category can be associated
with operations of any category or the serialized query plan as a whole. In Code 6.1,
the property cost is in the Cost category, and the two numbers of cost denote the
cost scores of starting and finishing the associated operation by estimating the
total consumption of disk and CPU. As in the Cardinality category, SQLite lacks
properties in the Cost category.

Configuration. The Configuration category consists of the properties that con-
figure the operations’ parameters, and their values are configuration options which
are usually strings or boolean values. The properties in the Configuration category
can be associated with operations in any category or the serialized query plan, and
are typically specific to operations. In Code 6.1, PostgreSQL’s properties Group Key,
Set Cond, Sort Key, Recheck Cond, Index Cond, Filter are in the Configuration category
and are specific to the associated operations to show the keys used to group, the
condition to join, the key to sort, the condition to check, the index condition, and
the predicate to exclude data, respectively. SQLite’s property USING COVERING INDEX

denotes the index condition.
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Table 6.5: The officially supported formats of query plans.

Natural Structured
DBMS Graph Text Table JSON XML YAML
InfluxDB ✓
MongoDB ✓ ✓
MySQL ✓ ✓ ✓
Neo4j ✓ ✓ ✓
PostgreSQL ✓ ✓ ✓ ✓ ✓
SQL Server ✓ ✓ ✓ ✓
SQLite ✓
SparkSQL ✓ ✓
TiDB ✓ ✓ ✓

Status. The Status category consists of the properties of run-time status, and their
values are runtime metrics which are usually strings or numbers. These properties
can be associated with operations in any category or the serialized query plan, and
typically differ depending on the operations they are attached to. In Code 6.1,
the property Workers Planned is in the Status category and shows the number of
available computing nodes to execute the associated operation. As another example,
TiDB defines the property taskType to show the name of the computing nodes
that the operation is assigned to execute. The properties in the Status category
show running status, and are determined by the execution environment, while the
properties in the Parameters are usually decided by queries. The properties in both
Status and Configuration categories are customized, and thus are typically different
across DBMSs, while the properties in other categories share similar semantics or
functionalities across DBMSs.

6.2.5 Formats

DBMSs serialize query plans to various formats for different purposes. The
formats are typically controlled by a specific configuration in queries, such as for
PostgreSQL, the statement EXPLAIN (FORMAT JSON)SELECT. . . serializes the query plan
representation to JSON format. We classified all formats into two categories:
natural formats which are optimized for readability, and structured formats which
are optimized for machine reading. We also consider the graph formats that are
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supported in official IDEs.
Table 6.5 shows the different formats of query plan representations. Overall,

DBMSs support more formats in the natural category rather than the structured
category, suggesting that DBMSs prioritize readability over machine processing. Due
to the lack of a standard, none of the formats is supported by all DBMSs. For the
same DBMS, the formats in the natural category usually include less information
than the formats in the structured category. For example, in Code 6.1, the property
Parent Relationship represents how the associated operation passes data to another
operation. This property is ignored in the text format of the natural category, but
is shown in the JSON format of the structured category. We provide more details
of each format as follows.

Natural category. The natural category includes graph, text, and table formats.
Query plans are usually serialized as graphs for DBMSs’ IDEs, such as Workbench8

for MySQL, Compass9 for MongoDB. Text formats represent query plans as plain
text, such as shown in Code 6.1. Table formats encode each operation and associated
properties in a line, and use line numbers to represent the tree structure of query
plans. Graph formats are intuitive to understand, so graph formats are supported
by most DBMSs.

Structured category. The structured category includes the JSON, XML, and
YAML formats. These formats are standardized and widely used for exchanging
data [79, 22]. JSON is more widely supported by DBMSs than other structured
formats, and PostgreSQL supports all structured formats. Structured formats are
not supported by some DBMSs, such as InfluxDB, SQLite, and SparkSQL. SQLite
can output a structured format of bytecode, which includes low-level instructions,
not the operations and properties, so we do not consider it as a structured format of
query plan representations.

Visualization. Apart from the graph formats in official IDEs, third-party visual-
ization tools show query plans based on structured formats to enhance the readability
of query plans. Table 6.6 shows the visualization tools we found for the studied

8https://dev.mysql.com/doc/workbench/en/wb-performance-explain.html
9https://www.mongodb.com/docs/compass/current/query-plan/
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Table 6.6: Third-party visualization tools for query plans.

Tool DBMSs License
Postgres Explain Visualizer 2 [194] PostgreSQL Open-source
pgmustard [193] PostgreSQL Commercial
pganalyze [192] PostgreSQL Commercial
ApexSQL [188] SQL Server Commercial
Plan Explorer [129] SQL Server Commercial
Azure Data Studio [189] SQL Server Commercial
Dbvisualizer [190] MySQL, PostgreSQL,

SQL Server
Commercial

DBMSs. Six of the seven tools are commercial, suggesting the value of understanding
query plan representations for developers. Building these tools requires non-trivial
effort, because a tool is specific to a DBMS.

6.3 Unified Query Plan Representation
Our study in Section 6.2 shows that query plan representations share the same

conceptual basis, which is why we propose a unified query plan representation that
is:

1) complete, to include all information of a query plan,

2) general, to support various DBMSs we studied,

3) extensible, to support the DBMSs we did not study.

6.3.1 Design

To define and illustrate the unified query plan representation, we adopted Extend
Backus Naur Form (EBNF) [133], which is a metasyntax notation to express context-
free grammars. Code 6.2 shows the unified query plan representation in EBNF.
Following our study in Section 6.2, the unified representation includes the three
identified conceptual components of different categories. We define plan as a tree

that can have plan-associated properties. Within the tree, a node is defined as an
operation and zero or multiple operation-associated properties. operations and
properties are key-value pairs including corresponding categories, identifiers, and
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Code 6.2: The unified query plan representation in EBNF.
1 plan ::= ( tree )? properties
2 tree ::= node ( ’--children-->’ ’{’ tree (’,’ tree)* ’}’ )?
3 node ::= operation properties
4 operation ::= ’Operation’ ’:’ operation_category ’->’ operation_identifier
5 properties ::= ( property ( ’,’ property )* )?
6 property ::= property_category ’->’ property_identifier ’:’ value
7 operation_category ::= ’Producer’ | ’Bag’ | ’Join’ | ’Folder’ | ’Executor’ |

’Projector’ | ’Consumper’
8 property_category ::= ’Cardinality’ | ’Cost’ | ’Configuration’ | ’Status’
9 operation_identifier ::= keyword

10 property_identifier ::= keyword
11 keyword ::= letter ( letter | digit | ’_’ )*
12 value ::= string | number | boolean | ’null’
13 string ::= ’"’ ( letter | digit )* ’"’
14 number ::= ’-’? digit+
15 boolean ::= ’true’ | ’false’
16 letter ::= [a-zA-Z]
17 digit ::= [0-9]

values. In Figure 6.1, we also visualized the EBNF into a railroad diagram for an
intuitive explanation. To make it concise, we only show the symbols tree and node,
which express the high-level structure.

We use a unified naming convention to denote operations and properties in
the unified query plan representation. A unified naming convention increases the
readability and consistency of the representation while avoiding name collisions.
Section 6.2 shows that various operations and properties share similar semantics,
so we mapped DBMS-specific names of operations and properties to unified names.
For example, we mapped the operation name Seq Scan in PostgreSQL, Table Scan

in SQL Server, and TableFullScan in TiDB to Full Table Scan.
To support the unified naming convention, we also allow an operation or property

in a query plan to be mapped to a property or operation in the unified representation.
For example, TiDB defines a specific operation to filter data, and we mapped it to a
property for consistency across other DBMSs.

6.3.2 Analysis

We qualitatively analyze whether this design achieves three goals.

Completeness. The unified query plan representation includes the three con-
ceptual components: operations, properties, and formats, which we identified in
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tree:

node:

node --children--> { tree

,

}node --children--> { tree

,

}

operation propertiesoperation properties

Figure 6.1: Railroad diagrams of the symbols tree and node.

Section 6.2. Operations and properties are included in the tree of the unified rep-
resentation, and the unified representation can be serialized into other standard
formats, such as JSON and XML, which are used in query plan representations.

Generality. The unified query plan representation supports the query plan repre-
sentations of the nine DBMSs that we studied. InfluxDB’s query plan includes a
list of properties without operations, which can be represented by plan-associated
properties in the unified representation. For the other DBMSs, we identified opera-
tions and properties, mapped them into unified names, and organized them into our
unified representation.

Extensibility. The definitions of operations, properties, and categories in the
unified query plan representation can be extended or shrunk while keeping forward
and backward compatibility. Forward compatibility refers to allowing a system
accepts input intended for a later version of itself, and backward compatibility refers
to allowing a system accepts input intended for an older version of itself [173]. Both
evaluate whether the applications based on the unified query plan representation still
work if we update the representation to support more or different DBMSs. To keep
forward compatibility, we can add more categories by expanding operation_category

to include more category names, and add more operations and properties whose
names comply with the definition of the keyword at line 11 at Code 6.2. An existing
application still can parse the revised representation by ignoring the newly added
categories, operations, and properties, or handle them in a generic way (e.g., a
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visualization tool could represent unknown operations using a generic visual shape).
For backward compatibility, similarly, an existing application still can parse the
old version of the representation, whose categories, operations, and properties are
included in the new version of the representation.

6.4 Applications
We implemented the prototype of a reusable library, UPlan, to maintain the

unified query plan representation, and sought to demonstrate its utility through
three applications:

A.1 Testing. The DBMS testing methods QPG and CERT were implemented in
a DBMS-specific way due to DBMS-specific query plan representations, and
we show how the unified query plan representation allows both methods to be
implemented in a DBMS-agnostic way.

A.2 Visualization. Visualization tools visually display serialized query plans to
ease understanding, but are typically specific to a particular DBMS. We show
a general visualization tool based on the unified query plan representation.

A.3 Benchmarking. Benchmarking is an important method to evaluate the per-
formance of DBMSs. We show a case analysis of a comparison of query plan
representations using UPlan. We hope that allowing developers to easily
compare different DBMSs’ query plans enables them to improve their DBMSs’
query optimization capabilities.

DBMSs. For A.2 and A.3, we used MongoDB, MySQL, Neo4j, PostgreSQL, and
TiDB, because they support the JSON format of query plans because JSON is the
most widely supported structural format. Within these DBMSs, we used MySQL,
PostgreSQL, and TiDB for A.1 as they are supported by SQLancer. We used the
same versions of DBMSs that we studied in the Table 6.1.

Data set. For A.1, we used SQLancer to generate test cases. For A.2 and A.3,
we collected the serialized query plans of the queries from the TPC-H benchmark
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suite [123] on the five DBMSs. TPC-H benchmark suite comprises 8 tables and 22
queries for relational DBMSs: MySQL, PostgreSQL, and TiDB in our experiments.
MongoDB and Neo4j require manual effort to adapt TPC-H as it was not designed for
non-SQL languages and non-relational data models. MongoDB adopts a document
data model, which lacks support for join operations, so we embedded all entities in
one document and rewrote queries 1, 3, and 4 in the MongoDB Query Language
(MQL), following a tutorial.10 For Neo4j, which adopts a graph data model, we
mapped nodes into rows of the relational data model and edges into foreign keys
of the relational data model following another tutorial,11 and rewrote queries 1–14,
16–19 using the Cypher Query Language (CQL) following an example.12

Implementation. UPlan is a reusable library that consists of around 300 lines of
Python code to implement a reusable library, which allows adding or updating oper-
ations and properties. The prototype supports serializing query plan representations
into JSON as well as text formats, and provides an interface for supporting more
formats. We also implemented five customized converters to parse the query plan
representations from existing JSON formats to the unified query plan representation,
and each parser has around 200 lines of code.

A.1 Testing

We show an application on UPlan to implement the testing methods QPG [85]
and CERT [86] in a DBMS-agnostic way. QPG is a test case generation approach
that is guided by query plans; specifically, it mutates a database if no new query
plans have been observed for a specific number of randomly generated queries, aiming
to subsequently exercise new query plans, and thus exploring “interesting” behaviors.
In terms of implementation, evaluating whether a query plan is structurally different
from another requires ignoring unstable information, such as random identifiers and
the estimated cost in query plans. CERT is a test oracle for finding performance
issues by comparing estimated cardinalities, which have to be extracted from query

10https://alronz.github.io/Factors-Influencing-NoSQL-Adoption/site/MongoDB/
Examples/DenormalisedModel/

11https://alronz.github.io/Factors-Influencing-NoSQL-Adoption/site/Neo4j/
Examples/TPC-HQueries/

12https://github.com/aiquis/tpch-neo4j/blob/5e4e5c/tpch_queries.cql
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plans. Both methods were implemented in SQLancer, which is a popular and widely
used tool for automatically testing DBMSs. The original implementations used
DBMS-specific and error-prone methods, such as string matching and substitution
that had to be implemented for every DBMS that was supported. Both approaches
support relational DBMSs, but were not applied to the popular open-source DBMSs
MySQL and PostgreSQL, as additional DBMS-specific parsers would have been
required. Based on UPlan, we implemented general parsers for both methods to
support all UPlan-compatible DBMSs.

To evaluate UPlan on QPG and CERT , we applied the general parser to MySQL,
PostgreSQL, and TiDB. We ran our revised versions of QPG and CERT for 24
hours and found 17 bugs, as shown in Table 6.7. All reported bugs are unique and
previously unknown. Additionally, CERT found hundreds of potential bug-inducing
test cases in 24 hours, but it is challenging to distinguish their uniqueness, which
requires developers’ expertise. To avoid burdening developers, we will report them
after these bugs have been fixed. Code 6.3 shows a bug in MySQL found by the
test case generated by QPG with UPlan. Note that we identified this bug by the
test oracle Ternary Logic Partitioning (TLP) [150]; however, for presentation, we
simplified the bug-inducing test case by demonstrating that the same query returns
different results in lines 4 and 6 depending on whether the index exists. The cause
of the bug was an incorrect table look-up due to the index inserted by the SQL
statement in line 5. Using UPlan, we were able to apply QPG to MySQL easily,
which was previously incompatible and untested by QPG. This enabled us to find
this bug in MySQL.

Table 6.7: Previously unknown and unique bugs found with UPlan.

DBMS QPG CERT All
MySQL 6 1 7
PostgreSQL 0 1 1
TiDB 7 2 9

Sum: 17

We also found that UPlan reduces the risk of implementation bugs for DBMS-
specific query plan parsers. We identified an implementation bug in SQLancer.13

13https://github.com/sqlancer/sqlancer/pull/900
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Code 6.3: Bug #113302 found by QPG with UPlan.
1 CREATE TABLE t0(c0 INT, c1 INT);
2 INSERT INTO t0(c1, c0) VALUES(0, 1);
3
4 SELECT * FROM t0 WHERE t0.c1 IN (GREATEST(0.1, 0.2)); -- empty result
5 CREATE INDEX i0 ON t0(c1);
6 SELECT * FROM t0 WHERE t0.c1 IN (GREATEST(0.1, 0.2)); -- {1|0}

Specifically, the query plan parser for TiDB failed to exclude random identifiers due
to an incorrect parameter for EXPLAIN. With the single implementation for a parser
and the unified query plan representation, we have a lower risk of introducing these
implementation bugs.

UPlan enables large-scale adoption for testing methods QPG and CERT in a
DBMS-agnostic implementation way.

A.2 Visualization

We implemented a visualization tool for serialized query plans by modifying
PEV2 [194], a customized query plan visualization tool for PostgreSQL, to use the
unified query plan representation. We modified its parser to support identifying the
unified query plan representation, and updated its definitions of visualized elements,
such as operation names.

Using UPlan, our customized PEV2 supports query plan visualization of the
five DBMSs in the same implementation by modifying around 800 lines of code.
Suppose implementing a new visualization tool for another DBMS also requires at
least an additional 800 lines of code, then it would require 800 ∗ (5 − 1) = 3, 200
lines of code to support the five DBMSs based on PEV2 without the unified query
plan representation. UPlan reduces the effort of building a new visualization tool
for serialized query plans.

Figure 6.2 shows six examples of visualized serialized query plans from the two
tools in five DBMSs. The left green dashed box shows the visualized serialized query
plan in PEV2, which supports only PostgreSQL, while the right orange dashed box
includes the visualized serialized query plans in our customized PEV2, which uses
the unified query plan representation, and thus supports multiple DBMSs. These
examples are based on query 1 of the TPC-H benchmark suite. An operation and
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MongoDB
MySQL

PostgreSQL PostgreSQL Neo4j TiDB

PEV2 Our customized PEV2 based on the unified query plan representation

Figure 6.2: Visualized serialized query plan of query 1 from TPC-H benchmark by
two tools in five DBMSs.

its associated properties are visualized in a node. For example, in the first node
of MySQL query plan, Bag->Sort represents the operation Sort, which belongs to
the category Bag. The following is the description and properties. PEV2 shows the
original names of operations and properties in PostgreSQL’s query plans, while our
customized PEV2 shows the unified names of operations and properties.

Existing DBMS-specific visualization tools could support more DBMSs if they sup-
ported our unified query plan representation, and only moderate implementation
effort is required.
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Table 6.8: The average number of operations in query plans of the queries from the
TPC-H benchmark suite.

DBMS Producer Bag Join Folder Projector Executor Total

MongoDB 1.00 0.00 0.00 0.00 1.00 0.00 2.00
MySQL 4.55 0.82 2.77 0.86 0.00 0.27 9.27
Neo4j 0.39 0.78 2.89 0.06 0.72 3.06 7.89
PostgreSQL 3.95 1.32 2.64 1.73 0.00 2.45 12.09
TiDB 4.18 0.82 2.73 1.41 1.77 3.73 14.64

A.3 Benchmarking

In this application, we show how to find potential optimization opportunities by
comparing the serialized query plans across DBMSs using the unified query plan
representation. Query optimization is a critical process for DBMSs’ performance.
To evaluate how effective a query optimization is, existing methods depend on
measuring DBMSs’ execution time on standard datasets, such as TPC-H [123] and
the Join Order Benchmark (JOB) [100]. The execution time shows the overall
performance difference between various DBMSs, but cannot provide possible reasons
for performance gaps across DBMSs. UPlan enables comparing various serialized
query plans across DBMSs. Specifically, we collected metrics on the number of
operations in DBMSs’ query plan representations and show an example of analyzing
the difference.

Table 6.8 shows the average number of operations in each category for the query
plans of queries from the TPC-H benchmark suite. We omitted the Consumer
category as we did not encounter any such operations. The relational DBMSs,
MySQL, PostgreSQL, and TiDB, have more operations than the non-relational
DBMSs, MongoDB and Neo4j. It is because relational DBMSs have more operations
in the Producer category. To further explain the difference in the Producer category,
we looked into query plans and found that each table in relational DBMSs requires
at least one operation to read data, while non-relational DBMSs usually read all
data in one or two operations. Apart from MongoDB, the other four DBMSs have
a similar number of Join operations. The results also show that the query plans
of the queries in the TPC-H benchmark suite usually do not cover all categories
of operations due to the limited set of queries. The operations of the Producer
category are typically expensive for performance, and hence, developers typically
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Figure 6.3: Variance of the number of Producer operations for each query in TPC-H
benchmark suite across five DBMSs.

aim to analyze and reduce the occurrence of the operations in this category. We
explain an example to analyze them as follows.

Figure 6.3 shows the variance of the number of operations in the Producer
category for each query plan. Among 22 queries, the variances of six queries are
more than 5, indicating a significant difference. Queries 2, 8, 5, 7, and 9 have a
significant variance due to different data models. For example, for query 2, the
DBMSs of relational data models, MySQL, TiDB, and PostgreSQL, have 10, 12,
and 9 operations, while the DBMS based on the graph data model, Neo4j, has only
1 operation in the Producer category. Query 11 has a significant variance due to
another potential optimization issue, and we explain it as follows.

Code 6.4 shows query 1114 from the TPC-H benchmark suite and the correspond-
ing serialized query plans of PostgreSQL and TiDB using the unified query plan
representations in text format. The query references the three tables PARTSUPP,

SUPPLIER, NATION twice in the FROM and HAVING clauses respectively. PostgreSQL uses
six table scans, one for each table reference in the original query, while TiDB could
optimize the query to use only three scans. The table partsupp is scanned twice in
lines 19 and 21, because TiDB reduces the data size of table scanning by retrieving
a secondary index before the scan operation. The first scan retrieves indexes only
to obtain the row id, which is used for the second scan. Suppose both DBMSs
execute the operations in order and the same operation has the same performance

14https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
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Code 6.4: The unified serialized query plan representations in the text format for
query 11 in TPC-H. Underlines represent table names. Predicates in the query and
properties in the query plan representations are ignored for brevity.
1 SELECT ... FROM PARTSUPP, SUPPLIER, NATION WHERE ...
2 HAVING ... > (SELECT ... FROM PARTSUPP, SUPPLIER, NATION WHERE ...) ...;
3 ------------------------------------------------------------------------------
4 PostgreSQL: TiDB:
5 Bag->Sort Projector->Project
6 Folder->Aggregate Bag->Sort
7 Join->Hash Join Folder->Aggregate Hash
8 Producer->Full Table Projector->Project
9 name object: partsupp Join->Index Hash

10 Executor->Hash Row Join->Index Hash
11 Join->Hash Executor->Collect
12 Producer->Full Table Producer->Full Table
13 name object: supplier name object: nation

14 Executor->Hash Row Executor->Collect Order
15 Producer->Full Table Producer->Index-only Scan
16 name object: nation name object: supplier

17 Folder->Aggregate Executor->Collect Order
18 Join->Hash Join Producer->Index-only Scan
19 Producer->Full Table name object: partsupp

20 name object: partsupp Producer->Id Scan

21 Executor->Hash Row name object: partsupp

22 Join->Hash Join
23 Producer->Full Table
24 name object: supplier

25 Executor->Hash Row
26 Producer->Full Table
27 name object: nation

overhead in both DBMSs, then the query plan with three table scans is more efficient
than the query plan with six table scans. UPlan enables this analysis and provides
actionable insight for DBMS developers to improve query performance by reducing
three repeated table scans. We reported this issue to the PostgreSQL developers,
who confirmed that this case indicates an unsupported optimization by PostgreSQL.
One developer considered how this could be supported—"[...] maybe there is some
easy way to hook this into the same code used by GROUPING SETS [...]".15

Comparing the unified query plan representation provides actionable insights.
15https://www.postgresql.org/message-id/flat/CAMkU%3D1yL%

2Bg0VHM_OEgkhMiq6AbOOMN3zVXYK6pfs2HgQEsFb0g%40mail.gmail.com#
087581bdd2c9fc164931e0140b414f26
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6.5 Discussion

Paths to adoption. Developers can make use of the unified query plan repre-
sentation by customized converters to convert original serialized query plans into
the unified query plan representation. For all three applications we showed, we
implemented five customized converters, each of which has around 200 lines of code,
within one week only. If the converters can be implemented by DBMS developers or
experts, who are well-versed in the query plans, it is plausible that a higher-quality
converter could be developed in a shorter time. We hope that DBMSs will directly
expose query plans in the unified representation in the long term, thus avoiding a
conversion.

Additional use cases. We envision several additional use cases that are enabled
by our unified query plan representations. Toward a comprehensive evaluation of
query optimization, additional metrics could be explored, such as similarity on tree
structures [207], to compare different DBMSs’ query plans using our unified query
plan representation. To find issues in query optimization, we can apply differential
testing [114] or other methods to compare the unified query plan representations
among DBMSs. Query optimization approaches based on machine learning have
been proposed that take query plans as input and output suggestions for indexes [40],
views [212], and join orders [112, 211], so our unified query plan representation would
allow exchanging training data in different DBMSs to improve the performance of
models.

Threats to validity. Our study faces several threats to validity, which denotes
the trustworthiness [126, 154] of the results, and to what extent they are unbiased.
A major concern is the degree to which the data and analysis depend on the
specific researchers. We followed the best practice of triangulation [154], which
refers to taking multiple perspectives toward the same object, to increase reliability.
For data triangulation, we collected data from multiple sources: documentation,
source code, and third-party applications. For observer triangulation, one author
conducted the study, and another author validated the findings against the raw
data. For methodological triangulation, we used a qualitative method to analyze
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query plan representations, and a quantitative method to examine and classify
the three conceptual components of query plan representations. Furthermore, we
have made the process of data collection and analysis publicly available, along with
comprehensive study results presented in the supplementary materials of this paper.
Another concern is the degree to which our results can be generalized to and across
the query plan representations of other DBMSs. We selected representative DBMSs
of various data models: relational, document, graph, and time series. The last
concern is the degree to which the study really assesses the research questions we
aim at. We collected the data ourselves, and our analysis of the semantics may
be inconsistent with the intentions of the developers that implemented the query
plans.

6.6 Conclusion
We have presented an exploratory case study to investigate how query plan

representations are in nine widely-used DBMSs. Our study has shown that query plan
representations share conceptual components among different DBMSs: operations,
properties, and formats. Based on the study, we designed the unified query plan
representation to reduce the effort to build applications based on query plans.
We implemented a reusable library UPlan to maintain the unified representation,
and evaluated it on five DBMSs. The results show that existing DBMS-specific
visualization tools could support at least five DBMSs by using UPlan with only
moderate implementation effort, and existing testing methods can be efficiently
adopted. Additionally, UPlan also enables comparing query plans in different DBMSs,
which provides actionable insights. This paper provides a comprehensive study of
query plan representations, and can be used as a reference for other research on
serialized query plans. We believe the unified query plan representation provides
more opportunities to research serialized query plans in the future.
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Chapter 7

Related Work

In this chapter, I first discuss the related work on finding logic bugs and per-
formance issues in DBMSs, which is the focus of this thesis. Then I discuss the
research about query plans. Last, from a broader perspective, I also discuss other
reliability problems related to DBMSs.

7.1 Techniques for Finding Bugs
Various techniques for finding bugs in DBMSs have been explained in section 2.2,

and we discuss the related work on these techniques in this section.

7.1.1 Metamorphic Testing

The most related research is about metamorphic testing. Metamorphic testing
mostly finds logic bugs and performance issues, and has been applied successfully
in various domains, such as web applications [28] and compilers [98]. For DBMSs,
NoREC [149] and TLP [150] oracles were proposed as a metamorphic testing method
for detecting logic bugs in SELECT statements. These three oracles were implemented
in SQLancer and have found hundreds of bugs. DQE [162] adopted metamorphic
testing to find logic bugs in UPDATE and INSERT statements. Jiang et al. [84] adopted
metamorphic testing to find logic bugs in graph database systems. Liu et al. proposed
AMOEBA [107], which compares the execution time of a semantically equivalent
pair of queries to identify an unexpected slowdown. In this thesis, QPG can be
paired with these metamorphic testing methods, and CERT is a metamorphic testing
approach for finding performance issues with the cardinality restriction monotonicity
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property.

7.1.2 Differential Testing

Much work is about applying differential testing for DBMSs. Slutz et al. [161]
compared the output of executing the same test case on different DBMSs to find
logic bugs. Ghit et al. [54] compared the output of executing the same test case on
different versions of Spark1 to find regression bugs. Yagoub et al. [202] proposed
to use differential testing to find performance regression bugs before deploying any
change into a production environment. Jung et al. proposed APOLLO [89], which
compares the execution times of a query on two versions of a database system to find
performance regression bugs. Mozi [105] examined the equivalence of executing the
same query under different configurations of DBMSs. DQP is a differential testing
method described in this thesis to compare executing different query plans of the
same query. DQP has commonalities with Mozi as some configurations can affect
query plans, but the core contribution of DQP is the insight that a simple method
can outperform a complicated method.

7.1.3 Fuzzing

Fuzzing has gained increased attention, because of the success of the coverage-
guided grey-box fuzzers such as AFL [180] and LibFuzzer [181], which mutate inputs
aiming to maximize code coverage for automatically finding memory-related bugs.
AFL, LibFuzzer, and other fuzzers enable the large-scale continuous fuzzing service
OSS-Fuzz [159], which automatically tests open-source programs, including SQLite2

and other DBMSs, and generates bug reports. A challenge of mutation is that it
easily generates invalid inputs. To generate grammar-valid inputs, SQLSmith [182]
used predefined grammars to generate valid inputs and has found over 100 bugs in
widely-used DBMSs. To generate semantically valid inputs, Fu et al. [51] proposed
to incorporate target DBMS metadata information to guide the input generation.
Squirrel [219] proposed to analyze data dependencies among statements to generate
both grammar-correct and semantic-correct inputs. Some researchers proposed
complex oracles to find more kinds of bugs in fuzzing. SQLRight [106] combined

1https://spark.apache.org/
2https://github.com/google/oss-fuzz/tree/41ee0518/projects/sqlite3
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grey-box fuzzing and metamorphic testing to find logic bugs using code coverage
as guidance for test case generation. In this thesis, QPG is compatible with these
fuzzing methods, and CERT focuses on finding logic bugs and performance issues.

7.1.4 Formal Verification

Different from the above testing techniques, which can show the presence of bugs,
formal verification is a technique to show the absence of bugs by verifying a system
with respect to a formal specification. Negri et al. [125] proposed a formal semantic
for SQL language. Benzaken et al. [13] proposed a Coq formalization of SQL to enable
formal verification on relational databases. Guagliardo et al. [66] further improved
the formalization by considering bag semantics and nulls. Then, Guagliardo et
al. [68] proposed a Codd semantic for NULL to distinguish different Nulls. Malecha
et al. [108] implemented a verified relational DBMS, whose specifications were written
and verified in Coq. Diana et al. [39] verified part of the SQL specifications by
model checking. Tan et al. [166] proposed to verify the serializability of executions in
key-value stores by Satisfiability Modulo Theories (SMT) solvers, which is a method
to determine whether a mathematical formula is satisfiable, and the formula is an
abstraction from the target system. Tang et al. [167] proposed to use a method based
on constraint solving to validate joining algorithms against ground-truth results.
Apart from verifying results, Chu et al. [35] used constraint-solving methods to
decide equivalent queries. In contrast to formal verification, this thesis focuses on
the testing technique.

7.1.5 Performance Benchmarking

Benchmarking is a common practice to identify performance regressions, and to
continuously improve the DBMSs’ performance on a set of benchmarks. TPC-H [123]
and TPC-DS [177] are the most popular benchmarks and are considered the industry
standard. Boncz et al. studied and identified 28 “chokepoints” (i.e., optimization
challenges) of the TPC-H benchmark [20]. Poess et al. modified and analyzed
the TPC-DS benchmark [138] to measure SQL-based big data systems. Karimov
et al. proposed a benchmark for stream-data-processing systems [90]. Boncz et
al. proposed an improved TPC-H benchmark,JCC-H [19], which introduces Join-
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Crossing-Correlations (JCC) to evaluate the scenarios where data in one table
can affect the behaviors of operations involving data in other tables. Leis et al.
proposed the Join Order Benchmark (JOB) [100], which uses more complex join
orders. Raasveldt et al. described common pitfalls when benchmarking DBMSs
and demonstrated how they can affect a DBMS’s performance [142]. In this thesis,
CERT is complementary to benchmarking; while benchmarking focuses on workloads
deemed relevant for users, CERT can find performance issues through the lens of
cardinality estimation even on previously unseen workloads.

7.1.6 Query Generation

Targeted and random generations are two major directions in query generation
for testing methods. As for targeted query generation, Bati et al. [11] proposed to
incorporate execution feedback, such as code coverage, for guiding query generation
to reach a specific code location. Khalek et al. [1] used a solver-backed approach
to generate syntactically and semantically correct queries. Generating queries
that satisfy cardinality constraints has been proven to be computationally hard,
which is why heuristic algorithms were proposed [25, 118]. As for random query
generation, SQLSmith [182], mentioned in Subsection 7.1.3, uses a predefined
grammar to randomly generate semantic valid queries. APOLLO [89], mentioned
in Subsection 7.1.2, also uses predefined grammar to generate queries for finding
regression performance issues. Squirrel [219] and SQLRight [106], both of which
are mentioned in Subsection 7.1.3, use a mutation-based method to randomly
generate new queries, but such approaches are prone to generating queries that are
semantically invalid. In this thesis, QPG uses a grammar-based random generation
method for generating valid queries.

7.1.7 Database Generation

Similarly, targeted and random generations are two major directions in database
generation. As for targeted database generation, Binnig et al. [17] proposed to
use symbolic execution to specify constraints and generate databases that satisfy
the constraints. Binnig et al. [16] proposed to reverse a given query and database
schema to generate databases. Kersten et al. [91] proposed to simulate real-world
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databases by profiling databases without accessing the data in databases. As for
random database state generation, Gray et al. [62] proposed to quickly generate
billions-record databases using parallel algorithms. Coverage-based methods [219,
106], mentioned in Subsection 7.1.3, generate new databases by mutating given SQL
statements that are used to create the database. Compared with these methods,
QPG uses query plans as guidance to generate more diverse databases for efficiently
finding logic bugs.

7.2 Query Plans
Related work about query plans has been proposed for understanding the per-

formance of queries, while I introduce it to the domain of automatic testing for
DBMSs.

7.2.1 Query Plans in Testing

There is no direct work to use query plans for automatically finding bugs, but
researchers used it to improve the quality of query optimizations. Gu et al. [64]
proposed measuring the accuracy of query optimizations by forcing the generation
of multiple alternative query plans for each test case, timing the execution of all
alternatives, and ranking the plans by their effective costs with the goal of comparing
this ranking with the ranking of the estimated cost. Pasupuleti et al. [132] proposed
to mitigate bugs in query optimizations by automatically switching query plans. In
this thesis, QPG uses query plans to guide test case generation, while CERT uses
query plans to find performance issues.

7.2.2 Manipulating Query Plans

Various techniques have been proposed to manipulate query plans. AEM [132]
uses query hints to switch query plans for bypassing bugs in run-time. PgCuckoo [77]
provides a plugin for PostgreSQL, so that PostgreSQL can execute arbitrary query
plans. However, a significant challenge, as claimed in the PgCuckoo paper, is that
manually manipulating query plans has a high invalid rate as the operations in a
query plan typically have dependencies on each other. TAQP [64] uses query hints
to switch query plans and measures execution time to check whether the query plan
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chosen by query optimizers is the optimal one. Compared with these methods, DQP
adopts a black-box manner to manipulate query plans by query hints and system
variables for finding logic bugs.

7.2.3 Query Optimization

Researchers and practitioners have invested decades of effort into improving
query optimization. An important optimization is the join order. Neumann et
al. [127] proposed to simplify the query’s join graph for a complex join to optimize
the join order. DeHaan et al. [38] designed an algorithm to combine enumeration and
search for optimizing the join order. Regarding index optimization, Bayer et al. [12]
proposed B-trees, which are widely used for index optimizations. Optimization
models are critical to estimating performance overhead for a query plan. Akdere
et al. [4] proposed a machine learning model to estimate performance overhead by
extracting plans and operators. Wu et al. [197] improved the performance estimation
by calibrating the estimated performance overhead of a system resource unit, such
as the I/O cost of accessing a page, by profiling tool. Predicates can be efficiently
executed in different locations of a query plan. Yan et al. [203] proposed to use
symbolic execution to verify which candidate predicates can be correctly pushed
down to another operator for optimizing predicate execution. Apart from obtaining
optimal query plans, Giceva et al. [55] proposed to efficiently execute query plans on
multi-core CPUs, and Paul et al. [134] proposed to execute query plans on GPUs.
Apart from improving query optimizations, some work evaluates query optimizations
in practice. Gu et al. [64] measured the accuracy of query optimizations by comparing
the estimated performance overhead and actual execution time of a query plan.
Leis et al. [100] investigated the impact of the components of a query optimizer
on performance and found cardinality estimation to be the most important sub-
component that affects query optimization. In this thesis, I focus on improving
testing techniques via query plans, instead of improving query optimizations.

7.2.4 Cardinality Estimation

Various approaches have been proposed to improve the accuracy of cardinality
estimation, which is one of the most important parts of query optimization. Han
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et al. [73] comprehensively evaluated various algorithms for cardinality estimation,
which describes some of the subsequent important approaches. PostgreSQL [186]
and MultiHist [140] applied one-dimensional and multi-dimensional histograms to
estimate cardinality. Similarly, UniSample [101, 217] and WJSample [103] used
sampling-based methods to estimate cardinality. Apart from these traditional ap-
proaches, machine learning-based methods have gained attention recently. MSCN [94,
210], LW-XGB [41], and UAE-Q [199] used deep neural networks, classic lightweight
regression models and deep auto-regression models to learn to map each query to
its estimated cardinality directly. In addition, NeuroCard [209], BayesCard [198],
DeepDB [76], and FSPN [200, 220] utilized deep auto-regression models and three
probabilistic graphical models BN, SPN, and FSPN to predicate the data distribu-
tion for cardinality estimation. In this thesis, CERT is a black-box technique that
inspects cardinality estimation to find performance issues.

7.2.5 Applications Based on Serialized Query Plans

Several applications based on serialized query plans exist. QE3D [155] visualizes
distributed serialized query plans for an intuitive understanding and analysis. Ma-
chine learning algorithms have utilized serialized query plans for query optimization.
Yuan et al. [212] used machine learning to select optimal views. Yu et al. [211] used
reinforcement learning to determine the join order. Marcus et al. [111] and Ryan
et al. [113] applied machine learning algorithms to generate query plans. Zhao et
al. [216] used machine learning to convert serialized query plan representations to
vector representations to facilitate other machine learning algorithms. In UPlan, we
propose a unified query plan representation, which reduces the effort to build the
applications based on serialized query plans.

7.3 Other Reliability Problems in DBMSs
DBMSs are complex systems, which suffer from more types of reliability problems,

other than logic bugs and performance issues. In this section, I discuss the related
research about other reliability problems.
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7.3.1 Environmental Reliability

DBMSs do not run in isolation and rely on the underlying Operating Systems
(OS) to provide storage, networking, computation, and other services. Environments
are complicated, so some work investigated whether environments can affect DBMSs’
robustness. Zheng et al. [218] studied the impact of power fault on DBMS reliability,
and found that all studied eight DBMSs exhibit erroneous behavior under power
fault. Pillai et al. [137] studied the impact of the faults of file systems on DBMS
reliability and found 60 vulnerabilities. To improve environmental robustness, both
formal verification and random testing have been widely researched. Chen et al. [30]
used formal methods to prove the correctness of the FSCQ file system. Bornholt et
al. [21] deployed a lightweight formal method to validate a key-value storage node
in the Amazon cloud storage engine. Mohan et al. [120] proposed to enumerate
workload in a bounded space to test whether file systems correctly recover to a
recent state after a power-loss crash. Kim et al. [92] used the fuzzing technique to
find non-crash bugs in file systems. In this thesis, both QPG and CERT work in a
constant environment assuming no fault in the environment.

7.3.2 Configuration Reliability

DBMSs, as well as other complex systems, introduce an increasing number of
configuration options to provide flexibility, but this mechanism also affects DBMSs’
robustness leading to memory-related bugs, logic bugs, and performance issues.
Toman et al. [169] adopted dynamic analysis to find incorrect usage of configuration
options. Sun et al. [164] proposed to reuse official test cases and deploy them in
real-world production to find logic bugs, and Cheng et al. [34] further improved
this method by prioritizing test cases before deploying. Wang et al. [176] designed
a method to find logic bugs in configurations by comparing consistency between
loading configurations at the start-up stage and updating them on-the-fly. The bugs
in configurations have shown a significant impact on performance. Han et al. [72]
studied the correlation between performance issues and configurations, and found that
more than half of previously found performance issues are due to misconfigurations
or are triggered by specific configurations. He et al. [74] adjusted configurations
and checked whether the performance is expected to find configuration-related
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performance issues. Some works focus on how to better analyze and fix the bugs
related to configurations. Wen et al. [195] applied machine learning algorithms to
predicate whether a bug report is related to configurations. Xu et al. [201] adopted
a static taint tracking method to analyze source code and automatically generate
the code for checking configuration correctness. In this thesis, both QPG and
CERT work in the default configuration options of DBMSs assuming no fault in the
configurations.

7.3.3 Transactional Reliability

Another research topic focuses on the transaction, which is a feature of DBMSs
that executes a set of operations as a single unit [14], and must guarantee the
properties: atomicity, consistency, isolation, and durability (ACID). Transaction is
a complex procedure, so many methods have been proposed to find logic bugs that
violate the ACID properties. Cerone et al. [26] proposed a framework to specify
consistency models for transactions uniformly, which facilitates the test oracle con-
structions in manual and automatic checking methods. Biswas et al. [18] investigated
the complexity of checking transactional correctness, and found consistency models
are polynomial-time checkable while prefix consistency is NP-complete. Kingsbury
et al. [93] recorded and analyzed execution traces to find the violations of the ACID
properties by comparing them against predefined consistency models. Tan et al. [166]
improved the throughput of these checking tools by hardware accelerating and new
encoding of transactional patterns. Apart from randomly generated transactions,
Huang et al. [78] adopted Satisfiability Modulo Theories (SMT) solvers to check
whether a violation is feasible. To find bugs in complex transactions, Jiang et al. [83]
instrumented statements to capture statement dependencies for generating complex
transactions. In this thesis, QPG and CERT do not specifically generate and test
transactional correctness but are compatible with the statements of controlling the
transactional process in user interfaces.

7.3.4 DBMS Application Reliability

Many applications are built on top of DBMSs, and their reliability is also a
related research topic. Many researchers focus on generating diverse database states
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to test the applications more thoroughly. Pan et al. [131] proposed a method to
generate database states by using dynamic symbolic execution to simulate the
interaction between the application and the associated DBMS. Agrawal et al. [3]
proposed to generate specific database states by using SMT solvers. Yan et al. [204]
proposed to mutate existing database states with the guidance of branch coverage
of the application. Apart from test case generation, Gligoric et al. [58] adopted
the model checking method to find concurrency bugs in web applications that use
DBMSs. In this thesis, I focus on the reliability of the DBMSs, not the applications
built on top of them.

7.3.5 Bug Minimization and Deduplication

Bug minimization, which minimizes the test case size, and bug deduplication,
which drops repeated test cases, are two research directions to reduce the effort of
debugging. Automatically bug-finding methods, such as SQLancer [150, 149, 151]
and SQLSmith [182], typically produce a lot of long and duplicate bug-inducing test
cases, which significantly burden the workload of debugging work by developers.
Most related work focuses on general test cases, instead of specifically DBMS test
cases. Zeller et al. [215] proposed delta debugging, which is a technique to gradually
remove some portions of test cases while bugs are still observable. Wang et al. [175]
improved the efficiency of dealt debugging by removing the most likely redundant
portions according to a probabilistic estimation model. Apart from research works,
some industry tools have been widely used. C-reducer 3 is a tool that implements
the delta debugging algorithm and is embedded in the C/C++ compiler testing work
CSmith [208]. SQLReduce 4 is a tool for minimizing SQL test cases specifically by
trimming syntax trees and is developed by PostgreSQL. As for bug deduplication, the
stack trace is one of the widely-used metrics to distinguish duplicate memory-related
bugs [156]. Vasiliev et al. [172] proposed to use machine-learning algorithms to
calculate the similarity of stack traces for bug deduplication. Rodrigues et al. [152]
improved the efficiency of stack trace comparison by matching identical frames in
two stack traces independently. Another method for distinguishing duplicate bugs is
commit bisection, which deduplicates bugs according to the firstly introduced commit

3https://github.com/csmith-project/creduce
4https://github.com/credativ/sqlreduce
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and has already been used in SQLite 5. Abreu et al. [2] experimentally evaluated the
automatic commit bisection, and found it can help developers deduplicate and fix
bugs 2.23 times faster. In this thesis, I focus on bug-finding techniques and directly
use existing techniques to minimize and duplicate bugs.

7.4 Research Methodologies
Various reserach methodologies are adopted in this thesis, and we discuss them

in this section.

7.4.1 Simple Over Complex

Several existing works in other domains adopt a similar methodology as DQP
to propose a simple technique that can outperform an existing sophisticated one.
Kali [141] uses a simple method that only deletes functionality and outperforms
previous sophisticated techniques for automatically generating software patches. Fu
et al. [52] demonstrated that a simple tuned Support Vector Machine (SVM) can
outperform a sophisticated Convolutional Neural Network (CNN) algorithm. This
paper was also inspired by Kali.

7.4.2 Standardization

Multiple works were proposed to standardize DBMSs, similar to UPlan. Feng
et al. [48] proposed a unified architecture to reduce the implementation effort for
in-RDBMS analytics. Mitschang [119] proposed a unified view of design data
and knowledge representation when supporting database systems to non-standard
applications, such as Computer-Aided Design (CAD). Ginsburg et al. [56] proposed
a unified approach to query sequenced data. Gueidi et al. [69] proposed a unified
modeling method for Non-relational DBMSs (NoSQL) to facilitate the applications
on NoSQL. Compared to these works, UPlan propose a unified framework for the
query plan representations in DBMSs.

5https://news.ycombinator.com/item?id=37255022
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Chapter 8

Conclusion

In this chapter, I summarize the thesis and discuss several possible future research
directions.

8.1 Summary
In this thesis, I have proposed leveraging query plans to advance state-of-the-art

testing methods for efficiently finding logic bugs and performance issues in DBMSs.
First, I proposed a novel approach CERT to identify performance issues through
the lens of cardinality estimation in DBMSs. The key idea is to, given a query,
derive a more restrictive query and validate that the DBMSs’ estimated cardinalities
that the original query has at least as great estimated cardinality as the more
restrictive query; I refer to this property as cardinality restriction monotonicity.
CERT has found 13 unique previously-unknown bugs. Second, I proposed the
method DQP, a simple alternative test oracle to a state-of-the-art and complex test
oracle TQS. The key idea is that different query plans of the same query should
return the same result. Otherwise, a logic bug is found. Although DQP is simple
and straightforward, it found 26 unique and previously unknown bugs that were
overlooked by TQS, without complex calculations. Third, I proposed the concept of
QPG for generating diverse test cases for efficiently finding logic bugs. The core idea
is that covering more unique query plans might increase the likelihood of finding logic
bugs. QPG enabled us to find 53 unique, previously unknown bugs in widely-used
and extensively-tested DBMSs—SQLite, TiDB, and CockroachDB. Last, observing
query plan representations are specific to DBMSs making it challenging to widely
apply the above testing methods, I conducted an exploratory case study of query
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plan representations and proposed a unified query plan representation UPlan. By
integrating UPlan, the above testing methods can be directly applied to a large
number of targets. These methods are black-box methods that are applicable without
modifying the source code of target systems and enable finding difficult-to-trigger
bugs.

8.2 Future work
Current research exploration of leveraging query plans in the testing domain is

still in the early stage. I believe query plans have more potential to be discovered
for improving existing testing methods, and this area of research needs more effort.
Specifically, I have the following potential future research directions:

Evaluating the quality of test suites. A high-quality test suite assures that
the target program is tested thoroughly. Evaluating the quality of a test suite is
challenging due to the unknown space of the target program’s behaviors. A common
criterion is code coverage [59], where higher code coverage implies more behaviors
tested. However, for DBMSs, 100% code coverage cannot guarantee all behaviors are
covered.1 I found that some bug-inducing test cases have covered code repetition,
but uncovered query plans than previous test cases [85]. Thus, I envision that
query plan coverage is a more accurate metric to evaluate the quality of test suites.
Across multiple test suites, a higher-quality test suite has higher query plan coverage.
Within the same test suite, a high-quality test case has more distinct parts of the
query plan from others.

Detecting bugs in various types of DBMSs. Apart from the DBMSs of the
relational model I tested, The DBMSs of more types of data models, such as graph,
document, and key-value, are also widely used2 and are affected by bugs. I believe
my research can be extended to test them. As a specific example, MongoDB, a
document database that is used for flexible data structures, has a similar concept of
query plans,3 which also expose internal execution information in a black-box manner.

1https://www.sqlite.org/testing.html#mcdc
2https://db-engines.com/en/ranking_categories
3https://www.mongodb.com/docs/manual/core/query-plans
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Therefore, test oracles based on query plans might detect logic bugs in MongoDB.
Another type of DBMS, the distributed DBMS, leaves more room for bugs, because
it is deployed in clusters in which nodes interact with each other to process SQL
statements. Detecting logic bugs in distributed DBMSs is challenging [70], because
the number of potential execution sequences is enormous, and no ground-truth
answers can be used to validate results automatically. An existing method Jepsen4

checks linearizability, but cannot identify incorrect results. Query plans expose the
information of various possible and valid execution sequences for the same query
across multiple nodes.5 Therefore, I believe we can detect logic bugs in distributed
DBMSs by measuring the inconsistencies across the execution results of multiple
equivalent query plans for the same query.

Simulating DBMS workloads in production environments. To continuously
improve DBMSs, developers require real-world execution traces for analysis, such
as which operation degrades performance and how bugs are triggered. Considering
privacy, few customers of DBMSs are willing to share their database schema, data
samples, and queries with developers [91], especially in production environments.
Query plans include concrete execution steps of queries on databases, and the
operations in query plans are affected by databases. For example, when accessing a
table, the operation IndexLookupReader is only used when the indexes in queried tables
do not completely cover calculated columns, otherwise, the operation IndexReader

is used.6 Therefore, my intuition is that we can infer databases from query plans.
Considering the same example above, if the operation IndexLookupReader is used in
the query plan, we infer that part of the calculated columns have indexes. Given a
query plan, we want to infer several possible queries, database schema, and data
samples that execute the same query plan, then developers can execute them to
simulate customers’ environments for analysis.

Verification of query optimizers. I believe that query plans can contribute to
the verification of query optimizers. As explained in section 2.2, existing verification
methods face the challenges of state abstraction and scalability problems. Query

4https://jepsen.io
5https://www.cockroachlabs.com/docs/stable/explain.html#distsql-option
6https://docs.pingcap.com/tidb/dev/choose-index#access-tables
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plans provide a compact abstraction of internal execution logic and include a count-
able number of states. We can construct specifications according to the semantics
of query plans, and evaluate them by model checking or run-time verification [10]
methods. For example, the hash join operation in CockroachDB7 is expected to
have a left child operation with a smaller estimated cardinality than that of the
right child operation, and we can encode this property into specifications. This
method could reduce the effort and improve the accuracy of the state abstraction.
This method is also practical, because query plans can be obtained in a black-box
manner.

Debugging DBMSs. To debug bugs in DBMSs, existing debuggers, such as
Habitat [63], are usually applied at the language (i.e. SQL) level. Developers still
need to manually examine source code, with one study suggesting around 95% [53].
Query plans include internal execution information, so I believe we can use query
plans to automatically debug the execution steps of DBMSs. Given a query, we may
add breakpoints to the operations on its query plan, so the query plan is executed
step by step and we examine the behaviors, such as the estimated cardinality, of
each step. Unlike general debugging tools, such as gdb8 for C/C++ programs, we
debug DBMSs at a semantic level, instead of a source code level aiming to facilitate
understanding the behaviors of DBMSs. Note that existing DBMSs do not support
such a mechanism to add breakpoints into query plans, and we may need additional
effort to implement such a feature for query plans.

Vision: Internal representations in testing. Existing testing methods typically
consider inputs, outputs, and domain-agnostic information, such as code coverage, for
testing, while this thesis put forward that for the DBMSs, internal representations
are useful for efficiently and effectively testing complex program space. Since
many important kinds of systems, such as compilers,9 use internal intermediate
representations, I envision that, in general, internal representations can be a useful
testing element, in addition to inputs and outputs. We could extend our methods
to more general methods for testing other systems, such as identifying performance

7https://www.cockroachlabs.com/docs/stable/joins.html#hash-joins
8https://www.gnu.org/savannah-checkouts/gnu/gdb/index.html
9https://llvm.org/docs/LangRef.html
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issues in compilers by inspecting internal representations. At the same time, the
requirements of testing can motivate the design of internal representations. For
example, if a data read operation should always consume less memory than a data
write operation, we can request developers to include the memory consumption
information in internal representations. Overall, I believe our work represents a
conceptual advance in testing. We expect that the research community will take
the work in this thesis forward, to further understand, utilize, and improve internal
representations in testing.

145



BIBLIOGRAPHY

Bibliography
[1] S. Abdul Khalek and S. Khurshid, “Automated sql query generation for

systematic testing of database engines”, in Proceedings of the IEEE/ACM
international conference on Automated software engineering, 2010, pp. 329–
332.

[2] R. Abreu, F. Ivančic, F. Nikšic, H. Ravanbakhsh, and R. Viswanathan,
“Reducing time-to-fix for fuzzer bugs”, in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, 2021, pp. 1126–
1130.

[3] P. Agrawal, B. Chandra, K. V. Emani, N. Garg, and S. Sudarshan, “Test
data generation for database applications”, in 2018 IEEE 34th International
Conference on Data Engineering (ICDE), IEEE, 2018, pp. 1621–1624.

[4] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik, “Learning-
based query performance modeling and prediction”, in IEEE 28th Interna-
tional Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012, A. Kementsietsidis and M. A. V.
Salles, Eds., IEEE Computer Society, 2012, pp. 390–401. [Online]. Available:
https://doi.org/10.1109/ICDE.2012.64.

[5] A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov, “Evaluating the “small
scope hypothesis””, in In Popl, vol. 2, 2003.

[6] R. Angles and C. Gutierrez, “Survey of graph database models”, ACM
Comput. Surv., vol. 40, no. 1, 1:1–1:39, 2008. [Online]. Available: https:
//doi.org/10.1145/1322432.1322433.

[7] T. J. Anih, C. A. Bede, and C. F. Umeokpala, “Detection of anomalies in
a time series data using influxdb and python”, CoRR, vol. abs/2012.08439,
2020. arXiv: 2012.08439. [Online]. Available: https://arxiv.org/abs/
2012.08439.

146

https://doi.org/10.1109/ICDE.2012.64
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/1322432.1322433
https://arxiv.org/abs/2012.08439
https://arxiv.org/abs/2012.08439
https://arxiv.org/abs/2012.08439


BIBLIOGRAPHY

[8] R. Arora and R. R. Aggarwal, “Modeling and querying data in mongodb”,
International Journal of Scientific and Engineering Research, vol. 4, no. 7,
pp. 141–144, 2013.

[9] T. Bach, A. Andrzejak, C. Seo, C. Bierstedt, C. Lemke, D. Ritter, D. Hwang,
E. Sheshi, F. Schabernack, F. Renkes, G. Gaumnitz, J. Martens, L. Hömke,
M. Felderer, M. Rudolf, N. Jambigi, N. May, R. Joy, R. Scheja, S. Schwedes,
S. Seibel, S. Seifert, S. Haas, S. Kraft, T. Kroll, T. Scheuer, and W. Lehner,
“Testing very large database management systems: The case of SAP HANA”,
Datenbank-Spektrum, vol. 22, no. 3, pp. 195–215, 2022. [Online]. Available:
https://doi.org/10.1007/s13222-022-00426-x.

[10] E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger, “Introduction to
runtime verification”, Lectures on Runtime Verification: Introductory and
Advanced Topics, pp. 1–33, 2018.

[11] H. Bati, L. Giakoumakis, S. Herbert, and A. Surna, “A genetic approach for
random testing of database systems”, in Proceedings of the 33rd International
Conference on Very Large Data Bases, ser. VLDB ’07, Vienna, Austria: VLDB
Endowment, 2007, pp. 1243–1251, isbn: 978-1-59593-649-3.

[12] R. Bayer and E. McCreight, “Organization and maintenance of large or-
dered indices”, in Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control, 1970, pp. 107–141.

[13] V. Benzaken, E. Contejean, and S. Dumbrava, “A coq formalization of
the relational data model”, in Programming Languages and Systems: 23rd
European Symposium on Programming, ESOP 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings 23, Springer, 2014,
pp. 189–208.

[14] P. A. Bernstein and E. Newcomer, “Principles of transaction processing”,
Morgan Kaufmann, 2009.

[15] D. A. Berry and B. Fristedt, “Bandit problems: Sequential allocation of
experiments (monographs on statistics and applied probability)”, London:
Chapman and Hall, vol. 5, no. 71-87, pp. 7–7, 1985.

147

https://doi.org/10.1007/s13222-022-00426-x


BIBLIOGRAPHY

[16] C. Binnig, D. Kossmann, and E. Lo, “Reverse query processing”, in 2007 IEEE
23rd International Conference on Data Engineering, IEEE, 2006, pp. 506–515.

[17] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu, “Qagen: Generating
query-aware test databases”, in Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’07, Bei-
jing, China: Association for Computing Machinery, 2007, pp. 341–352, isbn:
9781595936868.

[18] R. Biswas and C. Enea, “On the complexity of checking transactional consis-
tency”, Proceedings of the ACM on Programming Languages, vol. 3, no. OOP-
SLA, pp. 1–28, 2019.

[19] P. A. Boncz, A. G. Anadiotis, and S. Kläbe, “JCC-H: adding join crossing cor-
relations with skew to TPC-H”, in Performance Evaluation and Benchmarking
for the Analytics Era - 9th TPC Technology Conference, TPCTC 2017, Mu-
nich, Germany, August 28, 2017, Revised Selected Papers, R. Nambiar and
M. Poess, Eds., ser. Lecture Notes in Computer Science, vol. 10661, Springer,
2017, pp. 103–119. [Online]. Available: https://doi.org/10.1007/978-3-
319-72401-0%5C_8.

[20] P. A. Boncz, T. Neumann, and O. Erling, “TPC-H analyzed: Hidden messages
and lessons learned from an influential benchmark”, in Performance Char-
acterization and Benchmarking - 5th TPC Technology Conference, TPCTC
2013, Trento, Italy, August 26, 2013, Revised Selected Papers, R. Nambiar and
M. Poess, Eds., ser. Lecture Notes in Computer Science, vol. 8391, Springer,
2013, pp. 61–76. [Online]. Available: https://doi.org/10.1007/978-3-
319-04936-6%5C_5.

[21] J. Bornholt, R. Joshi, V. Astrauskas, B. Cully, B. Kragl, S. Markle, K. Sauri,
D. Schleit, G. Slatton, S. Tasiran, et al., “Using lightweight formal methods to
validate a key-value storage node in amazon s3”, in Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, 2021, pp. 836–
850.

148

https://doi.org/10.1007/978-3-319-72401-0%5C_8
https://doi.org/10.1007/978-3-319-72401-0%5C_8
https://doi.org/10.1007/978-3-319-04936-6%5C_5
https://doi.org/10.1007/978-3-319-04936-6%5C_5


BIBLIOGRAPHY

[22] J. Bosak, “Xml, java, and the future of the web”, World Wide Web J., vol. 2,
no. 4, pp. 219–227, 1997. [Online]. Available: http://metalab.unc.edu/
pub/sun-info/standards/xml/why/xmlapps.htm.

[23] F. Bousquet, R. Lifran, M. Tidball, S. Thoyer, and M. Antona, “Editorial
introduction”, J. Artif. Soc. Soc. Simul., vol. 4, no. 2, 2001. [Online]. Available:
http://jasss.soc.surrey.ac.uk/4/2/0.html.

[24] N. Bruno, S. Chaudhuri, and D. Thomas, “Generating queries with cardinality
constraints for dbms testing”, IEEE Trans. on Knowl. and Data Eng., vol. 18,
no. 12, pp. 1721–1725, Dec. 2006, issn: 1041-4347.

[25] N. Bruno, S. Chaudhuri, and D. Thomas, “Generating queries with cardinality
constraints for dbms testing”, IEEE Transactions on Knowledge and Data
Engineering, vol. 18, no. 12, pp. 1721–1725, 2006.

[26] A. Cerone, G. Bernardi, and A. Gotsman, “A framework for transactional
consistency models with atomic visibility”, in 26th International Conference
on Concurrency Theory (CONCUR 2015), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

[27] D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english query
language”, in Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)
workshop on Data description, access and control, 1974, pp. 249–264.

[28] W. K. Chan, S. C. Cheung, and K. R. Leung, “A metamorphic testing
approach for online testing of service-oriented software applications”, Inter-
national Journal of Web Services Research (IJWSR), vol. 4, no. 2, pp. 61–81,
2007.

[29] S. Chaudhuri, “An overview of query optimization in relational systems”, in
Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 1-3, 1998, Seattle, Washington,
USA, A. O. Mendelzon and J. Paredaens, Eds., ACM Press, 1998, pp. 34–43.
[Online]. Available: https://doi.org/10.1145/275487.275492.

[30] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N. Zeldovich,
“Using crash hoare logic for certifying the fscq file system”, in Proceedings of
the 25th Symposium on Operating Systems Principles, 2015, pp. 18–37.

149

http://metalab.unc.edu/pub/sun-info/standards/xml/why/xmlapps.htm
http://metalab.unc.edu/pub/sun-info/standards/xml/why/xmlapps.htm
http://jasss.soc.surrey.ac.uk/4/2/0.html
https://doi.org/10.1145/275487.275492


BIBLIOGRAPHY

[31] T. Y. Chen, S. C. Cheung, and S. Yiu, “Metamorphic testing: A new approach
for generating next test cases”, CoRR, vol. abs/2002.12543, 2020. arXiv:
2002.12543. [Online]. Available: https://arxiv.org/abs/2002.12543.

[32] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities”, ACM
Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–27, 2018.

[33] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and J. Regehr,
“Taming compiler fuzzers”, in Proceedings of the 34th ACM SIGPLAN con-
ference on Programming language design and implementation, 2013, pp. 197–
208.

[34] R. Cheng, L. Zhang, D. Marinov, and T. Xu, “Test-case prioritization for con-
figuration testing”, in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2021, pp. 452–465.

[35] S. Chu, C. Wang, K. Weitz, and A. Cheung, “Cosette: An automated prover
for sql.” In CIDR, 2017.

[36] E. M. Clarke, “Model checking”, in Foundations of Software Technology and
Theoretical Computer Science: 17th Conference Kharagpur, India, December
18–20, 1997 Proceedings 17, Springer, 1997, pp. 54–56.

[37] E. F. Codd, “A relational model of data for large shared data banks”, Commun.
ACM, vol. 13, no. 6, pp. 377–387, 1970. [Online]. Available: https://doi.
org/10.1145/362384.362685.

[38] D. DeHaan and F. W. Tompa, “Optimal top-down join enumeration”, in Pro-
ceedings of the 2007 ACM SIGMOD international conference on Management
of data, 2007, pp. 785–796.

[39] R. Diana, H. Marques-Neto, L. Zarate, and M. Song, “A symbolic model
checking appproach to verifying transact-sql”, in 2012 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2012, pp. 1735–
1741.

150

https://arxiv.org/abs/2002.12543
https://arxiv.org/abs/2002.12543
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685


BIBLIOGRAPHY

[40] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. R. Narasayya, “AI
meets AI: leveraging query executions to improve index recommendations”,
in Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 -
July 5, 2019, P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande, and
T. Kraska, Eds., ACM, 2019, pp. 1241–1258. [Online]. Available: https:

//doi.org/10.1145/3299869.3324957.

[41] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaudhuri,
“Selectivity estimation for range predicates using lightweight models”, Proc.
VLDB Endow., vol. 12, no. 9, pp. 1044–1057, 2019. [Online]. Available: http:
//www.vldb.org/pvldb/vol12/p1044-dutt.pdf.

[42] E. E F. Codd, “Derivability, redundancy and consistency of relations stored
in large data banks”, ACM SIGMOD Record, vol. 38, no. 1, pp. 17–36, 2009.

[43] L. Eder, “Say no to venn diagrams when explaining joins”, https://blog.
jooq.org/say-no-to-venn-diagrams-when-explaining-joins/, Ac-
cessed: 2022-11-15, 2022.

[44] M. Egea, C. Dania, and M. Clavel, “Mysql4ocl: A stored procedure-based
mysql code generator for OCL”, Electron. Commun. Eur. Assoc. Softw. Sci.
Technol., vol. 36, 2010. [Online]. Available: https://doi.org/10.14279/
tuj.eceasst.36.445.

[45] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, and M. M. Joshi, “Execution
strategies for sql subqueries”, in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, 2007, pp. 993–1004.

[46] P. Fender and G. Moerkotte, “Counter strike: Generic top-down join enu-
meration for hypergraphs”, Proc. VLDB Endow., vol. 6, no. 14, pp. 1822–
1833, 2013. [Online]. Available: http://www.vldb.org/pvldb/vol6/p1822-
fender.pdf.

[47] P. Fender, G. Moerkotte, T. Neumann, and V. Leis, “Effective and robust
pruning for top-down join enumeration algorithms”, in IEEE 28th Inter-
national Conference on Data Engineering (ICDE 2012), Washington, DC,
USA (Arlington, Virginia), 1-5 April, 2012, A. Kementsietsidis and M. A. V.

151

https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/3299869.3324957
http://www.vldb.org/pvldb/vol12/p1044-dutt.pdf
http://www.vldb.org/pvldb/vol12/p1044-dutt.pdf
https://blog.jooq.org/say-no-to-venn-diagrams-when-explaining-joins/
https://blog.jooq.org/say-no-to-venn-diagrams-when-explaining-joins/
https://doi.org/10.14279/tuj.eceasst.36.445
https://doi.org/10.14279/tuj.eceasst.36.445
http://www.vldb.org/pvldb/vol6/p1822-fender.pdf
http://www.vldb.org/pvldb/vol6/p1822-fender.pdf


BIBLIOGRAPHY

Salles, Eds., IEEE Computer Society, 2012, pp. 414–425. [Online]. Available:
https://doi.org/10.1109/ICDE.2012.27.

[48] X. Feng, A. Kumar, B. Recht, and C. Re, “Towards a unified architecture
for in-rdbms analytics”, in Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA,
May 20-24, 2012, K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano,
and A. Fuxman, Eds., ACM, 2012, pp. 325–336. [Online]. Available: https:
//doi.org/10.1145/2213836.2213874.

[49] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault,
S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor, “Cypher: An evolving
query language for property graphs”, in Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, G. Das, C. M. Jermaine, and P. A. Bernstein,
Eds., ACM, 2018, pp. 1433–1445. [Online]. Available: https://doi.org/10.
1145/3183713.3190657.

[50] J. Fu, J. Liang, Z. Wu, and Y. Jiang, “Sedar: Obtaining high-quality seeds for
dbms fuzzing via cross-dbms sql transfer”, in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, 2024, pp. 1–12.

[51] J. Fu, J. Liang, Z. Wu, M. Wang, and Y. Jiang, “Griffin : Grammar-free
DBMS fuzzing”, in 37th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2022, Rochester, MI, USA, October 10-14, 2022,
ACM, 2022, 49:1–49:12. [Online]. Available: https://doi.org/10.1145/
3551349.3560431.

[52] W. Fu and T. Menzies, “Easy over hard: A case study on deep learning”,
in Proceedings of the 2017 11th joint meeting on foundations of software
engineering, 2017, pp. 49–60.

[53] S. Gathani, P. Lim, and L. Battle, “Debugging database queries: A survey of
tools, techniques, and users”, in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, 2020, pp. 1–16.

152

https://doi.org/10.1109/ICDE.2012.27
https://doi.org/10.1145/2213836.2213874
https://doi.org/10.1145/2213836.2213874
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3551349.3560431
https://doi.org/10.1145/3551349.3560431


BIBLIOGRAPHY

[54] B. Ghit, N. Poggi, J. Rosen, R. Xin, and P. Boncz, “Sparkfuzz: Searching cor-
rectness regressions in modern query engines”, in Proceedings of the workshop
on Testing Database Systems, 2020, pp. 1–6.

[55] J. Giceva, G. Alonso, T. Roscoe, and T. Harris, “Deployment of query plans
on multicores”, Proceedings of the VLDB Endowment, vol. 8, no. 3, pp. 233–
244, 2014.

[56] S. Ginsburg and X. Wang, “Pattern matching by rs-operations: Towards a
unified approach to querying sequenced data”, in Proceedings of the eleventh
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, 1992, pp. 293–300.

[57] J. Gittins, K. Glazebrook, and R. Weber, “Multi-armed bandit allocation
indices”, John Wiley & Sons, 2011.

[58] M. Gligoric and R. Majumdar, “Model checking database applications”, in
Tools and Algorithms for the Construction and Analysis of Systems: 19th
International Conference, TACAS 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings 19, Springer, 2013, pp. 549–564.

[59] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evaluation by
developers”, in Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 72–82.

[60] G. Graefe, “Query evaluation techniques for large databases”, ACM Comput-
ing Surveys (CSUR), vol. 25, no. 2, pp. 73–169, 1993.

[61] G. Graefe et al., “Modern b-tree techniques”, Foundations and Trends® in
Databases, vol. 3, no. 4, pp. 203–402, 2011.

[62] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly generating billion-record synthetic databases”, in Proceedings of the
1994 ACM SIGMOD international conference on Management of data, 1994,
pp. 243–252.

[63] T. Grust, F. Kliebhan, J. Rittinger, and T. Schreiber, “True language-level sql
debugging”, in Proceedings of the 14th International Conference on Extending
Database Technology, 2011, pp. 562–565.

153



BIBLIOGRAPHY

[64] Z. Gu, M. A. Soliman, and F. M. Waas, “Testing the accuracy of query
optimizers”, in Proceedings of the Fifth International Workshop on Testing
Database Systems, 2012, pp. 1–6.

[65] P. Guagliardo and L. Libkin, “A formal semantics of SQL queries, its val-
idation, and applications”, Proc. VLDB Endow., vol. 11, no. 1, pp. 27–
39, 2017. [Online]. Available: http://www.vldb.org/pvldb/vol11/p27-
guagliardo.pdf.

[66] P. Guagliardo and L. Libkin, “A formal semantics of sql queries, its validation,
and applications”, Proceedings of the VLDB Endowment, vol. 11, no. 1, pp. 27–
39, 2017.

[67] P. Guagliardo and L. Libkin, “How standard is the SQL standard?” In Proceed-
ings of the 12th Alberto Mendelzon International Workshop on Foundations
of Data Management, Cali, Colombia, May 21-25, 2018, D. Olteanu and B.
Poblete, Eds., ser. CEUR Workshop Proceedings, vol. 2100, CEUR-WS.org,
2018. [Online]. Available: https://ceur-ws.org/Vol-2100/paper16.pdf.

[68] P. Guagliardo and L. Libkin, “On the codd semantics of sql nulls”, Information
Systems, vol. 86, pp. 46–60, 2019.

[69] A. Gueidi, H. Gharsellaoui, and S. B. Ahmed, “Towards unified modeling
for nosql solution based on mapping approach”, in Knowledge-Based and
Intelligent Information & Engineering Systems: Proceedings of the 25th In-
ternational Conference KES-2021, Virtual Event / Szczecin, Poland, 8-10
September 2021, J. Watrobski, W. Salabun, C. Toro, C. Zanni-Merk, R. J.
Howlett, and L. C. Jain, Eds., ser. Procedia Computer Science, vol. 192,
Elsevier, 2021, pp. 3637–3646. [Online]. Available: https://doi.org/10.
1016/j.procs.2021.09.137.

[70] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do, J.
Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, et al.,
“What bugs live in the cloud? a study of 3000+ issues in cloud systems”, in
Proceedings of the ACM symposium on cloud computing, 2014, pp. 1–14.

154

http://www.vldb.org/pvldb/vol11/p27-guagliardo.pdf
http://www.vldb.org/pvldb/vol11/p27-guagliardo.pdf
https://ceur-ws.org/Vol-2100/paper16.pdf
https://doi.org/10.1016/j.procs.2021.09.137
https://doi.org/10.1016/j.procs.2021.09.137


BIBLIOGRAPHY

[71] A. Guttman, “R-trees: A dynamic index structure for spatial searching”, in
SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA,
June 18-21, 1984, B. Yormark, Ed., ACM Press, 1984, pp. 47–57. [Online].
Available: https://doi.org/10.1145/602259.602266.

[72] X. Han and T. Yu, “An empirical study on performance bugs for highly
configurable software systems”, in Proceedings of the 10th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement,
2016, pp. 1–10.

[73] Y. Han, Z. Wu, P. Wu, R. Zhu, J. Yang, L. W. Tan, K. Zeng, G. Cong, Y.
Qin, A. Pfadler, Z. Qian, J. Zhou, J. Li, and B. Cui, “Cardinality estimation
in DBMS: A comprehensive benchmark evaluation”, Proc. VLDB Endow.,
vol. 15, no. 4, pp. 752–765, 2021. [Online]. Available: https://www.vldb.
org/pvldb/vol15/p752-zhu.pdf.

[74] H. He, Z. Jia, S. Li, E. Xu, T. Yu, Y. Yu, J. Wang, and X. Liao, “Cp-detector:
Using configuration-related performance properties to expose performance
bugs”, in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 623–634.

[75] M. Heimel, M. Kiefer, and V. Markl, “Self-tuning, gpu-accelerated kernel
density models for multidimensional selectivity estimation”, in Proceedings
of the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, T. K. Sellis,
S. B. Davidson, and Z. G. Ives, Eds., ACM, 2015, pp. 1477–1492. [Online].
Available: https://doi.org/10.1145/2723372.2749438.

[76] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig,
“Deepdb: Learn from data, not from queries!” Proc. VLDB Endow., vol. 13,
no. 7, pp. 992–1005, 2020. [Online]. Available: http://www.vldb.org/pvldb/
vol13/p992-hilprecht.pdf.

[77] D. Hirn and T. Grust, “Pgcuckoo: Laying plan eggs in postgresql’s nest”, in
Proceedings of the 2019 International Conference on Management of Data,
2019, pp. 1929–1932.

155

https://doi.org/10.1145/602259.602266
https://www.vldb.org/pvldb/vol15/p752-zhu.pdf
https://www.vldb.org/pvldb/vol15/p752-zhu.pdf
https://doi.org/10.1145/2723372.2749438
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf


BIBLIOGRAPHY

[78] K. Huang, S. Liu, Z. Chen, H. Wei, D. Basin, H. Li, and A. Pan, “Effi-
cient black-box checking of snapshot isolation in databases”, arXiv preprint
arXiv:2301.07313, 2023.

[79] E. International, “Ecma-404—the json data interchange format”, 2013.

[80] Y. E. Ioannidis, “The history of histograms (abridged)”, in Proceedings of
29th International Conference on Very Large Data Bases, VLDB 2003, Berlin,
Germany, September 9-12, 2003, J. C. Freytag, P. C. Lockemann, S. Abiteboul,
M. J. Carey, P. G. Selinger, and A. Heuer, Eds., Morgan Kaufmann, 2003,
pp. 19–30. [Online]. Available: http://www.vldb.org/conf/2003/papers/
S02P01.pdf.

[81] S. Jeon, J. Bang, K. Byun, and S. Lee, “A recovery method of deleted record
for sqlite database”, Personal and Ubiquitous Computing, vol. 16, no. 6,
pp. 707–715, 2012.

[82] Z.-M. Jiang, J.-J. Bai, and Z. Su, “Dynsql: Stateful fuzzing for database
management systems with complex and valid sql query generation”,, Aug.
2023.

[83] Z.-M. Jiang, S. Liu, M. Rigger, and Z. Su, “Detecting transactional bugs in
database engines via Graph-Based oracle construction”, in 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 23),
Boston, MA: USENIX Association, Jul. 2023, pp. 397–417, isbn: 978-1-
939133-34-2. [Online]. Available: https://www.usenix.org/conference/
osdi23/presentation/jiang.

[84] Y. Jiang, J. Liu, J. Ba, R. H. C. Yap, Z. Liang, and M. Rigger, “Detecting logic
bugs in graph database management systems via injective and surjective graph
query transformation”, in 2024 IEEE/ACM 46th International Conference
on Software Engineering (ICSE), IEEE Computer Society, 2023, pp. 531–542.

[85] Jinsheng Ba and M. Rigger, “Testing database engines via query plan
guidance”, in The 45th International Conference on Software Engineering
(ICSE’23), ACM SIGSOFT Distinguished Paper Award, May 2023.

156

http://www.vldb.org/conf/2003/papers/S02P01.pdf
http://www.vldb.org/conf/2003/papers/S02P01.pdf
https://www.usenix.org/conference/osdi23/presentation/jiang
https://www.usenix.org/conference/osdi23/presentation/jiang


BIBLIOGRAPHY

[86] Jinsheng Ba and M. Rigger, “Finding performance issues in database engines
via cardinality estimation testing”, in The 46th International Conference on
Software Engineering (ICSE’24), Apr. 2024.

[87] Jinsheng Ba and M. Rigger, “Keep it simple: Testing databases via differ-
ential query plans”, Proc. ACM Manag. Data (SIGMOD’24), Jun. 2024.

[88] Jinsheng Ba and M. Rigger, “Towards a unified query plan representation
for database applications”, in Arxiv.

[89] J. Jung, H. Hu, J. Arulraj, T. Kim, and W. Kang, “APOLLO: automatic
detection and diagnosis of performance regressions in database systems”,
Proc. VLDB Endow., vol. 13, no. 1, pp. 57–70, 2019. [Online]. Available:
http://www.vldb.org/pvldb/vol13/p57-jung.pdf.

[90] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V.
Markl, “Benchmarking distributed stream data processing systems”, in 34th
IEEE International Conference on Data Engineering, ICDE 2018, Paris,
France, April 16-19, 2018, IEEE Computer Society, 2018, pp. 1507–1518.
[Online]. Available: https://doi.org/10.1109/ICDE.2018.00169.

[91] M. L. Kersten, Y. Zhang, N. Nes, and P. Koutsourakis, “Bridging the chasm
between science and reality.” In CIDR, 2021.

[92] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding semantic
bugs in file systems with an extensible fuzzing framework”, in Proceedings of
the 27th ACM Symposium on Operating Systems Principles, 2019, pp. 147–
161.

[93] K. Kingsbury and P. Alvaro, “Elle: Inferring isolation anomalies from experi-
mental observations”, arXiv preprint arXiv:2003.10554, 2020.

[94] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper, “Learned
cardinalities: Estimating correlated joins with deep learning”, in 9th Biennial
Conference on Innovative Data Systems Research, CIDR 2019, Asilomar,
CA, USA, January 13-16, 2019, Online Proceedings, www.cidrdb.org, 2019.
[Online]. Available: http://cidrdb.org/cidr2019/papers/p101-kipf-
cidr19.pdf.

157

http://www.vldb.org/pvldb/vol13/p57-jung.pdf
https://doi.org/10.1109/ICDE.2018.00169
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf


BIBLIOGRAPHY

[95] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz
testing”, in Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security, 2018, pp. 2123–2138.

[96] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit problems”,
arXiv preprint arXiv:1402.6028, 2014.

[97] C. Laaber, J. Scheuner, and P. Leitner, “Software microbenchmarking in the
cloud. how bad is it really?” Empir. Softw. Eng., vol. 24, no. 4, pp. 2469–2508,
2019. [Online]. Available: https://doi.org/10.1007/s10664-019-09681-1.

[98] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence modulo
inputs”, ACM Sigplan Notices, vol. 49, no. 6, pp. 216–226, 2014.

[99] T. J. Lehman and M. J. Carey, “A study of index structures for main
memory database management systems”, in VLDB’86 Twelfth International
Conference on Very Large Data Bases, August 25-28, 1986, Kyoto, Japan,
Proceedings, W. W. Chu, G. Gardarin, S. Ohsuga, and Y. Kambayashi, Eds.,
Morgan Kaufmann, 1986, pp. 294–303. [Online]. Available: http://www.vldb.
org/conf/1986/P294.PDF.

[100] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann,
“How good are query optimizers, really?” Proceedings of the VLDB Endow-
ment, vol. 9, no. 3, pp. 204–215, 2015.

[101] V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann, “Cardinality
estimation done right: Index-based join sampling”, in 8th Biennial Conference
on Innovative Data Systems Research, CIDR 2017, Chaminade, CA, USA,
January 8-11, 2017, Online Proceedings, www.cidrdb.org, 2017. [Online].
Available: http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf.

[102] A. Y. Levy, I. S. Mumick, and Y. Sagiv, “Query optimization by predicate
move-around”, in VLDB’94, Proceedings of 20th International Conference on
Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile, J. B.
Bocca, M. Jarke, and C. Zaniolo, Eds., Morgan Kaufmann, 1994, pp. 96–107.
[Online]. Available: http://www.vldb.org/conf/1994/P096.PDF.

158

https://doi.org/10.1007/s10664-019-09681-1
http://www.vldb.org/conf/1986/P294.PDF
http://www.vldb.org/conf/1986/P294.PDF
http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
http://www.vldb.org/conf/1994/P096.PDF


BIBLIOGRAPHY

[103] F. Li, B. Wu, K. Yi, and Z. Zhao, “Wander join: Online aggregation via
random walks”, in Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA,
June 26 - July 01, 2016, F. Özcan, G. Koutrika, and S. Madden, Eds., ACM,
2016, pp. 615–629. [Online]. Available: https://doi.org/10.1145/2882903.
2915235.

[104] J. Liang, Y. Chen, Z. Wu, J. Fu, M. Wang, Y. Jiang, X. Huang, T. Chen,
J. Wang, and J. Li, “Sequence-oriented dbms fuzzing”, in 2023 IEEE 39th
International Conference on Data Engineering (ICDE), IEEE, 2023, pp. 668–
681.

[105] J. Liang, Z. Wu, J. Fu, M. Wang, C. Sun, and Y. Jiang, “Mozi: Discovering
dbms bugs via configuration-based equivalent transformation”, in Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–12.

[106] Y. Liang, S. Liu, and H. Hu, “Detecting logical bugs of DBMS with coverage-
based guidance”, in 31st USENIX Security Symposium (USENIX Security
22), USENIX Association, Aug. 2022, isbn: 978-1-939133-31-1.

[107] X. Liu, Q. Zhou, J. Arulraj, and A. Orso, “Automatic detection of performance
bugs in database systems using equivalent queries”, in 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022, Pittsburgh,
PA, USA, May 25-27, 2022, ACM, 2022, pp. 225–236. [Online]. Available:
https://doi.org/10.1145/3510003.3510093.

[108] G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky, “Toward a verified
relational database management system”, in Proceedings of the 37th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
2010, pp. 237–248.

[109] H. B. Mann and D. R. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other”, The annals of mathematical
statistics, pp. 50–60, 1947.

159

https://doi.org/10.1145/2882903.2915235
https://doi.org/10.1145/2882903.2915235
https://doi.org/10.1145/3510003.3510093


BIBLIOGRAPHY

[110] M. Marcozzi, Q. Tang, A. F. Donaldson, and C. Cadar, “Compiler fuzzing:
How much does it matter?” Proceedings of the ACM on Programming Lan-
guages, vol. 3, no. OOPSLA, pp. 1–29, 2019.

[111] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska, “Bao:
Making learned query optimization practical”, SIGMOD Rec., vol. 51, no. 1,
pp. 6–13, 2022. [Online]. Available: https://doi.org/10.1145/3542700.
3542703.

[112] R. Marcus and O. Papaemmanouil, “Deep reinforcement learning for join order
enumeration”, in Proceedings of the First International Workshop on Exploit-
ing Artificial Intelligence Techniques for Data Management, aiDM@SIGMOD
2018, Houston, TX, USA, June 10, 2018, R. Bordawekar and O. Shmueli,
Eds., ACM, 2018, 3:1–3:4. [Online]. Available: https://doi.org/10.1145/
3211954.3211957.

[113] R. C. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O.
Papaemmanouil, and N. Tatbul, “Neo: A learned query optimizer”, Proc.
VLDB Endow., vol. 12, no. 11, pp. 1705–1718, 2019. [Online]. Available:
http://www.vldb.org/pvldb/vol12/p1705-marcus.pdf.

[114] W. M. McKeeman, “Differential testing for software”, Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[115] Q. Meng, X. Ma, W. Lu, and Z. Yao, “A spatial SQL based on sparksql”,
in Geo-Spatial Knowledge and Intelligence - 4th International Conference
on Geo-Informatics in Resource Management and Sustainable Ecosystem,
GRMSE 2016, Hong Kong, China, November 18-20, 2016, Revised Selected
Papers, Part I, H. Yuan, J. Geng, and F. Bian, Eds., ser. Communications
in Computer and Information Science, vol. 698, Springer, 2016, pp. 437–
443. [Online]. Available: https://doi.org/10.1007/978-981-10-3966-
9%5C_50.

[116] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability
of unix utilities”, Communications of the ACM, vol. 33, no. 12, pp. 32–44,
1990.

160

https://doi.org/10.1145/3542700.3542703
https://doi.org/10.1145/3542700.3542703
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145/3211954.3211957
http://www.vldb.org/pvldb/vol12/p1705-marcus.pdf
https://doi.org/10.1007/978-981-10-3966-9%5C_50
https://doi.org/10.1007/978-981-10-3966-9%5C_50


BIBLIOGRAPHY

[117] C. Mishra, N. Koudas, and C. Zuzarte, “Generating targeted queries for
database testing”, in Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’08, Vancouver, Canada:
ACM, 2008, pp. 499–510, isbn: 978-1-60558-102-6. [Online]. Available: http:
//doi.acm.org/10.1145/1376616.1376668.

[118] C. Mishra, N. Koudas, and C. Zuzarte, “Generating targeted queries for
database testing”, in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, 2008, pp. 499–510.

[119] B. Mitschang, “Towards a unified view of design data and knowledge repre-
sentation”, in Expert Database Systems, Proceedings from the Second Interna-
tional Conference, Vienna, Virginia, USA, April 25-27, 1988, L. Kerschberg,
Ed., Benjamin/Cummings, 1988, pp. 133–159.

[120] J. Mohan, A. Martinez, S. Ponnapalli, P. Raju, and V. Chidambaram, “Find-
ing crash-consistency bugs with bounded black-box crash testing”, in 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 33–50.

[121] A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, and M. B. Westover, “Exact
discovery of time series motifs”, in Proceedings of the SIAM International
Conference on Data Mining, SDM 2009, April 30 - May 2, 2009, Sparks,
Nevada, USA, SIAM, 2009, pp. 473–484. [Online]. Available: https://doi.
org/10.1137/1.9781611972795.41.

[122] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing
wrong data without doing anything obviously wrong!” In Proceedings of the
14th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2009, Washington, DC, USA,
March 7-11, 2009, M. L. Soffa and M. J. Irwin, Eds., ACM, 2009, pp. 265–276.
[Online]. Available: https://doi.org/10.1145/1508244.1508275.

[123] R. O. Nambiar, M. Poess, A. Masland, H. R. Taheri, M. Emmerton, F.
Carman, and M. Majdalany, “TPC benchmark roadmap 2012”, in Selected
Topics in Performance Evaluation and Benchmarking - 4th TPC Technology
Conference, TPCTC 2012, Istanbul, Turkey, August 27, 2012, Revised Selected

161

http://doi.acm.org/10.1145/1376616.1376668
http://doi.acm.org/10.1145/1376616.1376668
https://doi.org/10.1137/1.9781611972795.41
https://doi.org/10.1137/1.9781611972795.41
https://doi.org/10.1145/1508244.1508275


BIBLIOGRAPHY

Papers, R. O. Nambiar and M. Poess, Eds., ser. Lecture Notes in Computer
Science, vol. 7755, Springer, 2012, pp. 1–20. [Online]. Available: https :

//doi.org/10.1007/978-3-642-36727-4%5C_1.

[124] G. Navarro, “A guided tour to approximate string matching”, ACM computing
surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[125] M. Negri, G. Pelagatti, and L. Sbattella, “Formal semantics of sql queries”,
ACM Transactions on Database Systems (TODS), vol. 16, no. 3, pp. 513–534,
1991.

[126] D. Neuman, “Evaluating evolution: Naturalistic inquiry and the perseus
project”, Comput. Humanit., vol. 25, no. 4, pp. 239–246, 1991. [Online].
Available: https://doi.org/10.1007/BF00116078.

[127] T. Neumann, “Query simplification: Graceful degradation for join-order
optimization”, in Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA,
June 29 - July 2, 2009, U. Çetintemel, S. B. Zdonik, D. Kossmann, and
N. Tatbul, Eds., ACM, 2009, pp. 403–414. [Online]. Available: https://doi.
org/10.1145/1559845.1559889.

[128] J. Oetsch, M. Prischink, J. Pührer, M. Schwengerer, and H. Tompits, “On
the small-scope hypothesis for testing answer-set programs”, in Thirteenth
International Conference on the Principles of Knowledge Representation and
Reasoning, 2012.

[129] A. Orthey, B. Fresz, and M. Toussaint, “Motion planning explorer: Visualizing
local minima using a local-minima tree”, IEEE Robotics Autom. Lett., vol. 5,
no. 2, pp. 346–353, 2020. [Online]. Available: https://doi.org/10.1109/
LRA.2019.2958524.

[130] H. Ouyang, H. Wei, H. Li, A. Pan, and Y. Huang, “Checking causal consistency
of mongodb”, J. Comput. Sci. Technol., vol. 37, no. 1, pp. 128–146, 2022.
[Online]. Available: https://doi.org/10.1007/s11390-021-1662-8.

[131] K. Pan, X. Wu, and T. Xie, “Guided test generation for database applica-
tions via synthesized database interactions”, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 23, no. 2, pp. 1–27, 2014.

162

https://doi.org/10.1007/978-3-642-36727-4%5C_1
https://doi.org/10.1007/978-3-642-36727-4%5C_1
https://doi.org/10.1007/BF00116078
https://doi.org/10.1145/1559845.1559889
https://doi.org/10.1145/1559845.1559889
https://doi.org/10.1109/LRA.2019.2958524
https://doi.org/10.1109/LRA.2019.2958524
https://doi.org/10.1007/s11390-021-1662-8


BIBLIOGRAPHY

[132] K. K. Pasupuleti, J. Li, H. Su, and M. Ziauddin, “Automatic sql error
mitigation in oracle”, Proceedings of the VLDB Endowment, vol. 16, no. 12,
pp. 3835–3847, 2023.

[133] R. E. Pattis, “Teaching EBNF first in CS 1”, in Proceedings of the 25th
SIGCSE Technical Symposium on Computer Science Education, SIGCSE
1994, Phoenix, Arizona, USA, March 10-12, 1994, R. Beck and D. Goelman,
Eds., ACM, 1994, pp. 300–303. [Online]. Available: https://doi.org/10.
1145/191029.191155.

[134] J. Paul, J. He, and B. He, “Gpl: A gpu-based pipelined query processing
engine”, in Proceedings of the 2016 International Conference on Management
of Data, 2016, pp. 1935–1950.

[135] A. Pavlo and M. Aslett, “What’s really new with newsql?” SIGMOD Rec.,
vol. 45, no. 2, pp. 45–55, 2016. [Online]. Available: https://doi.org/10.
1145/3003665.3003674.

[136] D. Pawlaszczyk, “Sqlite”, in Mobile Forensics - The File Format Handbook -
Common File Formats and File Systems Used in Mobile Devices, C. Hummert
and D. Pawlaszczyk, Eds., Springer, 2022, pp. 129–155. [Online]. Available:
https://doi.org/10.1007/978-3-030-98467-0%5C_5.

[137] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “All file systems are not created equal: On
the complexity of crafting {crash-consistent} applications”, in 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14),
2014, pp. 433–448.

[138] M. Poess, T. Rabl, and H. Jacobsen, “Analysis of TPC-DS: the first standard
benchmark for sql-based big data systems”, in Proceedings of the 2017 Sym-
posium on Cloud Computing, SoCC 2017, Santa Clara, CA, USA, September
24-27, 2017, ACM, 2017, pp. 573–585. [Online]. Available: https://doi.
org/10.1145/3127479.3128603.

[139] M. Poess and J. M. Stephens Jr., “Generating thousand benchmark queries
in seconds”, in Proceedings of the Thirtieth International Conference on Very

163

https://doi.org/10.1145/191029.191155
https://doi.org/10.1145/191029.191155
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1007/978-3-030-98467-0%5C_5
https://doi.org/10.1145/3127479.3128603
https://doi.org/10.1145/3127479.3128603


BIBLIOGRAPHY

Large Data Bases - Volume 30, ser. VLDB ’04, Toronto, Canada: VLDB
Endowment, 2004, pp. 1045–1053, isbn: 0-12-088469-0.

[140] V. Poosala and Y. E. Ioannidis, “Selectivity estimation without the attribute
value independence assumption”, in VLDB’97, Proceedings of 23rd Interna-
tional Conference on Very Large Data Bases, August 25-29, 1997, Athens,
Greece, M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopou-
los, and M. A. Jeusfeld, Eds., Morgan Kaufmann, 1997, pp. 486–495. [Online].
Available: http://www.vldb.org/conf/1997/P486.PDF.

[141] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch plausibil-
ity and correctness for generate-and-validate patch generation systems”, in
Proceedings of the 2015 International Symposium on Software Testing and
Analysis, 2015, pp. 24–36.

[142] M. Raasveldt, P. Holanda, T. Gubner, and H. Mühleisen, “Fair benchmarking
considered difficult: Common pitfalls in database performance testing”, in
Proceedings of the 7th International Workshop on Testing Database Systems,
DBTest@SIGMOD 2018, Houston, TX, USA, June 15, 2018, A. Böhm and
T. Rabl, Eds., ACM, 2018, 2:1–2:6. [Online]. Available: https://doi.org/
10.1145/3209950.3209955.

[143] K. Rabuzin, M. Cerjan, and S. Krizanic, “Supporting data types in neo4j”,
in New Trends in Database and Information Systems - ADBIS 2022 Short
Papers, Doctoral Consortium and Workshops: DOING, K-GALS, MADEISD,
MegaData, SWODCH, Turin, Italy, September 5-8, 2022, Proceedings, S.
Chiusano, T. Cerquitelli, R. Wrembel, K. Nørvåg, B. Catania, G. Vargas-Solar,
and E. Zumpano, Eds., ser. Communications in Computer and Information
Science, vol. 1652, Springer, 2022, pp. 459–466. [Online]. Available: https:
//doi.org/10.1007/978-3-031-15743-1%5C_42.

[144] J. W. Ratcliff, D. Metzener, et al., “Pattern matching: The gestalt approach”,
Dr. Dobb’s Journal, vol. 13, no. 7, p. 46, 1988.

[145] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and D.
Brumley, “Optimizing seed selection for fuzzing”, in 23rd USENIX Security
Symposium (USENIX Security 14), 2014, pp. 861–875.

164

http://www.vldb.org/conf/1997/P486.PDF
https://doi.org/10.1145/3209950.3209955
https://doi.org/10.1145/3209950.3209955
https://doi.org/10.1007/978-3-031-15743-1%5C_42
https://doi.org/10.1007/978-3-031-15743-1%5C_42


BIBLIOGRAPHY

[146] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case
reduction for c compiler bugs”, in Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser. PLDI
’12, Beijing, China: Association for Computing Machinery, 2012, pp. 335–
346, isbn: 9781450312059. [Online]. Available: https://doi.org/10.1145/
2254064.2254104.

[147] K. Rehmann, C. Seo, D. Hwang, B. T. Truong, A. Boehm, and D. H. Lee,
“Performance monitoring in SAP hana’s continuous integration process”,
SIGMETRICS Perform. Evaluation Rev., vol. 43, no. 4, pp. 43–52, 2016.
[Online]. Available: https://doi.org/10.1145/2897356.2897362.

[148] Research and Markets, “Database Software Global Market Report 2023”, 2023.
[Online]. Available: https://www.researchandmarkets.com/reports/

5735140 / database - software - global - market - report # product --

related-products.

[149] M. Rigger and Z. Su, “Detecting Optimization Bugs in Database Engines
via Non-Optimizing Reference Engine Construction”, in Proceedings of the
2020 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2020, Sacramento, California, United States, 2020.

[150] M. Rigger and Z. Su, “Finding bugs in database systems via query partition-
ing”, Proc. ACM Program. Lang., vol. 4, no. OOPSLA, 2020.

[151] M. Rigger and Z. Su, “Testing database engines via pivoted query synthesis”,
in 14th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 20), Banff, Alberta: USENIX Association, Nov. 2020.

[152] I. M. Rodrigues, D. Aloise, and E. R. Fernandes, “Fast: A linear time stack
trace alignment heuristic for crash report deduplication”, in Proceedings of
the 19th International Conference on Mining Software Repositories, 2022,
pp. 549–560.

[153] P. van Rosmalen, E. A. Boyle, J. van der Baaren, A. I. Kärki, and A. del
Blanco Aguado, “A case study on the design and development of minigames for

165

https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2897356.2897362
https://www.researchandmarkets.com/reports/5735140/database-software-global-market-report#product--related-products
https://www.researchandmarkets.com/reports/5735140/database-software-global-market-report#product--related-products
https://www.researchandmarkets.com/reports/5735140/database-software-global-market-report#product--related-products


BIBLIOGRAPHY

research methods and statistics”, EAI Endorsed Trans. Serious Games, vol. 1,
no. 3, e5, 2014. [Online]. Available: https://doi.org/10.4108/sg.1.3.e5.

[154] P. Runeson, M. Höst, A. Rainer, and B. Regnell, “Case Study Research
in Software Engineering - Guidelines and Examples”, Wiley, 2012, isbn:
978-1-118-10435-4. [Online]. Available: http://eu.wiley.com/WileyCDA/
WileyTitle/productCd-1118104358.html.

[155] D. Scheibli, C. Dinse, and A. Boehm, “QE3D: interactive visualization and
exploration of complex, distributed query plans”, in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, T. K. Sellis, S. B. Davidson,
and Z. G. Ives, Eds., ACM, 2015, pp. 877–881. [Online]. Available: https:
//doi.org/10.1145/2723372.2735364.

[156] A. Schroter, A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces
help developers fix bugs?” In 2010 7th IEEE working conference on mining
software repositories (MSR 2010), IEEE, 2010, pp. 118–121.

[157] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price, “Access path selection in a relational database management system”,
in Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’79, Boston, Massachusetts: Association
for Computing Machinery, 1979, pp. 23–34, isbn: 089791001X. [Online].
Available: https://doi.org/10.1145/582095.582099.

[158] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price, “Access path selection in a relational database management system”,
in Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data, Boston, Massachusetts, USA, May 30 - June 1, P. A.
Bernstein, Ed., ACM, 1979, pp. 23–34. [Online]. Available: https://doi.
org/10.1145/582095.582099.

[159] K. Serebryany, “Oss-fuzz-google’s continuous fuzzing service for open source
software”,, 2017.

[160] A. Silberschatz, H. F. Korth, S. Sudarshan, et al., “Database system concepts”,
in McGraw-Hill New York, 2002, vol. 1, ch. 15.

166

https://doi.org/10.4108/sg.1.3.e5
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118104358.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118104358.html
https://doi.org/10.1145/2723372.2735364
https://doi.org/10.1145/2723372.2735364
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099


BIBLIOGRAPHY

[161] D. R. Slutz, “Massive stochastic testing of sql”, Tech. Rep. MSR-TR-98-21,
Aug. 1998, p. 9. [Online]. Available: https://www.microsoft.com/en-

us/research/publication/massive-stochastic-testing-of-sql/.

[162] J. Song, W. Dou, Z. Cui, Q. Dai, W. Wang, J. Wei, H. Zhong, and T. Huang,
“Testing database systems via differential query execution”, in Proceedings of
IEEE/ACM International Conference on Software Engineering (ICSE), 2023.

[163] C. Strauch, U.-L. S. Sites, and W. Kriha, “Nosql databases”, Lecture Notes,
Stuttgart Media University, vol. 20, no. 24, p. 79, 2011.

[164] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing
configuration changes in context to prevent production failures”, in 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), 2020, pp. 735–751.

[165] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger, K.
Niemi, A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade, B. Darnell,
B. Gruneir, J. Jaffray, L. Zhang, and P. Mattis, “Cockroachdb: The resilient
geo-distributed sql database”, in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’20, Portland,
OR, USA: International Foundation for Autonomous Agents and Multiagent
Systems, 2020, isbn: 9781450367356.

[166] C. Tan, C. Zhao, S. Mu, and M. Walfish, “Cobra: Making transactional key-
value stores verifiably serializable”, in 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, Virtual Event, November
4-6, 2020, USENIX Association, 2020, pp. 63–80. [Online]. Available: https:
//www.usenix.org/conference/osdi20/presentation/tan.

[167] X. Tang, S. Wu, D. Zhang, F. Li, and G. Chen, “Detecting logic bugs of join
optimizations in dbms”, Proceedings of the ACM on Management of Data,
vol. 1, no. 1, pp. 1–26, 2023.

[168] X. Tang, S. Wu, D. Zhang, Z. Wang, G. Yuan, and G. Chen, “A demonstration
of dlbd: Database logic bug detection system”, Proceedings of the VLDB
Endowment, vol. 16, no. 12, pp. 3914–3917, 2023.

167

https://www.microsoft.com/en-us/research/publication/massive-stochastic-testing-of-sql/
https://www.microsoft.com/en-us/research/publication/massive-stochastic-testing-of-sql/
https://www.usenix.org/conference/osdi20/presentation/tan
https://www.usenix.org/conference/osdi20/presentation/tan


BIBLIOGRAPHY

[169] J. Toman and D. Grossman, “Staccato: A bug finder for dynamic configuration
updates”, in 30th European Conference on Object-Oriented Programming
(ECOOP 2016), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[170] H. Touzet, “Tree edit distance with gaps”, Inf. Process. Lett., vol. 85, no. 3,
pp. 123–129, 2003. [Online]. Available: https://doi.org/10.1016/S0020-
0190(02)00369-1.

[171] A. Vargha and H. D. Delaney, “A critique and improvement of the cl common
language effect size statistics of mcgraw and wong”, Journal of Educational
and Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[172] R. Vasiliev, D. Koznov, G. Chernishev, A. Khvorov, D. Luciv, and N. Povarov,
“Tracesim: A method for calculating stack trace similarity”, in Proceedings
of the 4th ACM SIGSOFT International Workshop on Machine-Learning
Techniques for Software-Quality Evaluation, 2020, pp. 25–30.

[173] W. Wallace, “Review of "designing with web standards (second edition) by
jeffrey zeldman", peachpit press, 2006, ISBN 0321385551”, ACM Queue, vol. 5,
no. 4, p. 56, 2007. [Online]. Available: https://doi.org/10.1145/1255421.
1255432.

[174] D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krishnamurthy, and N. Abu-
Ghazaleh, “{Syzvegas}: Beating kernel fuzzing odds with reinforcement learn-
ing”, in 30th USENIX Security Symposium (USENIX Security 21), 2021,
pp. 2741–2758.

[175] G. Wang, R. Shen, J. Chen, Y. Xiong, and L. Zhang, “Probabilistic delta
debugging”, in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2021, pp. 881–892.

[176] T. Wang, Z. Jia, S. Li, S. Zheng, Y. Yu, E. Xu, S. Peng, and X. Liao,
“Understanding and detecting on-the-fly configuration bugs”, in Proceedings
of the 45th International Conference on Software Engineering (ICSE), 2023.

[177] Website, “Tpc-ds benchmark”, https://www.tpc.org/tpcds/, Accessed:
2022-11-15, 1988.

168

https://doi.org/10.1016/S0020-0190(02)00369-1
https://doi.org/10.1016/S0020-0190(02)00369-1
https://doi.org/10.1145/1255421.1255432
https://doi.org/10.1145/1255421.1255432
https://www.tpc.org/tpcds/


BIBLIOGRAPHY

[178] Website. “Microsoft sql server”, (1989), [Online]. Available: https://www.
microsoft.com/en-us/sql-server/.

[179] Website, “Iso/iec 9075:1992, database language sql- july 30, 1992”, https:
//www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt, Accessed:
2022-06-08, 1992.

[180] Website, “American fuzzy lop (afl) fuzzer”, http://lcamtuf.coredump.cx/
afl/technical_details.txt, Accessed: 2022-06-08, 2013.

[181] Website, “Libfuzzer – a library for coverage-guided fuzz testing.” https:

//llvm.org/docs/LibFuzzer.html, Accessed: 2022-06-08, 2013.

[182] Website, “Sqlsmith”, https://github.com/anse1/sqlsmith, Accessed:
2022-06-08, 2015.

[183] Website, “Dynamic programming and edit distance”, https://www.cs.

jhu.edu/~langmea/resources/lecture_notes/dp_and_edit_dist.pdf,
Accessed: 2022-11-15, 2020.

[184] Website, “Cockroachdb customers”, https://www.cockroachlabs.com/
customers, Accessed: 2022-06-08, 2022.

[185] Website, “Most widely deployed and used database engine”, https://www.
sqlite.org/mostdeployed.html, Accessed: 2022-06-08, 2022.

[186] Website, “Postgresql”, https://www.postgresql.org/docs/current/row-
estimation-examples.html, Accessed: 2022-11-15, 2022.

[187] Website, “Tidb customers”, https://en.pingcap.com/customers, Accessed:
2022-06-08, 2022.

[188] Website. “Apexsql”, (2023), [Online]. Available: https://www.apexsql.com/
products/sql-tools-bundle-fundamentals/.

[189] Website. “Azure data studio”, (2023), [Online]. Available: https://learn.
microsoft.com/en-us/sql/azure-data-studio/query-plan-viewer?

view=sql-server-ver16.

[190] Website. “Dbvisualizer”, (2023), [Online]. Available: https://www.dbvis.
com/.

169

https://www.microsoft.com/en-us/sql-server/
https://www.microsoft.com/en-us/sql-server/
https://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
https://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/anse1/sqlsmith
https://www.cs.jhu.edu/~langmea/resources/lecture_notes/dp_and_edit_dist.pdf
https://www.cs.jhu.edu/~langmea/resources/lecture_notes/dp_and_edit_dist.pdf
https://www.cockroachlabs.com/customers
https://www.cockroachlabs.com/customers
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.postgresql.org/docs/current/row-estimation-examples.html
https://www.postgresql.org/docs/current/row-estimation-examples.html
https://en.pingcap.com/customers
https://www.apexsql.com/products/sql-tools-bundle-fundamentals/
https://www.apexsql.com/products/sql-tools-bundle-fundamentals/
https://learn.microsoft.com/en-us/sql/azure-data-studio/query-plan-viewer?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/azure-data-studio/query-plan-viewer?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/azure-data-studio/query-plan-viewer?view=sql-server-ver16
https://www.dbvis.com/
https://www.dbvis.com/


BIBLIOGRAPHY

[191] Website. “Iso/iec 9075-1:2023 information technology — database languages
sql”, (2023), [Online]. Available: https://www.iso.org/standard/76583.
html.

[192] Website. “Pganalyze”, (2023), [Online]. Available: https://pganalyze.com/.

[193] Website. “Pgmustard”, (2023), [Online]. Available: https://www.pgmustard.
com/.

[194] Website. “Postgres explain visualizer”, (2023), [Online]. Available: https:
//explain.dalibo.com/.

[195] W. Wen, T. Yu, and J. H. Hayes, “Colua: Automatically predicting configu-
ration bug reports and extracting configuration options”, in 2016 IEEE 27Th
international symposium on software reliability engineering (ISSRE), IEEE,
2016, pp. 150–161.

[196] M. Wu, L. Jiang, J. Xiang, Y. Huang, H. Cui, L. Zhang, and Y. Zhang,
“One fuzzing strategy to rule them all”, in Proceedings of the International
Conference on Software Engineering, 2022.

[197] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton,
“Predicting query execution time: Are optimizer cost models really unusable?”
In 2013 IEEE 29th International Conference on Data Engineering (ICDE),
IEEE, 2013, pp. 1081–1092.

[198] Z. Wu, A. Shaikhha, R. Zhu, K. Zeng, Y. Han, and J. Zhou, “Bayescard:
Revitilizing bayesian frameworks for cardinality estimation”, arXiv preprint
arXiv:2012.14743, 2020.

[199] Z. Wu, P. Yu, P. Yang, R. Zhu, Y. Han, Y. Li, D. Lian, K. Zeng, and
J. Zhou, “A unified transferable model for ml-enhanced DBMS”, in 12th
Conference on Innovative Data Systems Research, CIDR 2022, Chaminade,
CA, USA, January 9-12, 2022, www.cidrdb.org, 2022. [Online]. Available:
https://www.cidrdb.org/cidr2022/papers/p6-wu.pdf.

[200] Z. Wu, R. Zhu, A. Pfadler, Y. Han, J. Li, Z. Qian, K. Zeng, and J.
Zhou, “FSPN: A new class of probabilistic graphical model”, CoRR,
vol. abs/2011.09020, 2020. arXiv: 2011.09020. [Online]. Available: https:
//arxiv.org/abs/2011.09020.

170

https://www.iso.org/standard/76583.html
https://www.iso.org/standard/76583.html
https://pganalyze.com/
https://www.pgmustard.com/
https://www.pgmustard.com/
https://explain.dalibo.com/
https://explain.dalibo.com/
https://www.cidrdb.org/cidr2022/papers/p6-wu.pdf
https://arxiv.org/abs/2011.09020
https://arxiv.org/abs/2011.09020
https://arxiv.org/abs/2011.09020


BIBLIOGRAPHY

[201] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early
detection of configuration errors to reduce failure damage”, in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16),
2016, pp. 619–634.

[202] K. Yagoub, P. Belknap, B. Dageville, K. Dias, S. Joshi, and H. Yu, “Oracle’s
sql performance analyzer.” IEEE Data Eng. Bull., vol. 31, no. 1, pp. 51–58,
2008.

[203] C. Yan, Y. Lin, and Y. He, “Predicate pushdown for data science pipelines”,
Proceedings of the ACM on Management of Data, vol. 1, no. 2, pp. 1–28,
2023.

[204] C. Yan, S. Nath, and S. Lu, “Generating test databases for database-backed
applications”, in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), IEEE, 2023, pp. 2048–2059.

[205] J. Yan, Q. Jin, S. Jain, S. D. Viglas, and A. Lee, “Snowtrail: Testing with
production queries on a cloud database”, in Proceedings of the Workshop on
Testing Database Systems, 2018, pp. 1–6.

[206] J. Yang and X. Chen, “A semi-structured document model for text mining”,
J. Comput. Sci. Technol., vol. 17, no. 5, pp. 603–610, 2002. [Online]. Available:
https://doi.org/10.1007/BF02948828.

[207] R. Yang, P. Kalnis, and A. K. H. Tung, “Similarity evaluation on tree-
structured data”, in Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Baltimore, Maryland, USA, June 14-16,
2005, F. Özcan, Ed., ACM, 2005, pp. 754–765. [Online]. Available: https:
//doi.org/10.1145/1066157.1066243.

[208] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs
in c compilers”, in Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, 2011, pp. 283–294.

[209] Z. Yang, A. Kamsetty, S. Luan, E. Liang, Y. Duan, X. Chen, and I. Stoica,
“Neurocard: One cardinality estimator for all tables”, Proc. VLDB Endow.,
vol. 14, no. 1, pp. 61–73, 2020. [Online]. Available: http://www.vldb.org/
pvldb/vol14/p61-yang.pdf.

171

https://doi.org/10.1007/BF02948828
https://doi.org/10.1145/1066157.1066243
https://doi.org/10.1145/1066157.1066243
http://www.vldb.org/pvldb/vol14/p61-yang.pdf
http://www.vldb.org/pvldb/vol14/p61-yang.pdf


BIBLIOGRAPHY

[210] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel,
J. M. Hellerstein, S. Krishnan, and I. Stoica, “Deep unsupervised cardinality
estimation”, Proc. VLDB Endow., vol. 13, no. 3, pp. 279–292, 2019. [Online].
Available: http://www.vldb.org/pvldb/vol13/p279-yang.pdf.

[211] X. Yu, G. Li, C. Chai, and N. Tang, “Reinforcement learning with tree-lstm
for join order selection”, in 36th IEEE International Conference on Data
Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, IEEE, 2020,
pp. 1297–1308. [Online]. Available: https://doi.org/10.1109/ICDE48307.
2020.00116.

[212] H. Yuan, G. Li, L. Feng, J. Sun, and Y. Han, “Automatic view generation
with deep learning and reinforcement learning”, in 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24,
2020, IEEE, 2020, pp. 1501–1512. [Online]. Available: https://doi.org/10.
1109/ICDE48307.2020.00133.

[213] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and X. Zhou, “{Ecofuzz}:
Adaptive {energy-saving} greybox fuzzing as a variant of the adversarial
{multi-armed} bandit”, in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 2307–2324.

[214] A. Zeller, “Why programs fail - a guide to systematic debugging”, Elsevier,
2006, isbn: 978-1-55860-866-5.

[215] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input”, IEEE Transactions on Software Engineering, vol. 28, no. 2, pp. 183–
200, 2002.

[216] Y. Zhao, G. Cong, J. Shi, and C. Miao, “Queryformer: A tree transformer
model for query plan representation”, Proc. VLDB Endow., vol. 15, no. 8,
pp. 1658–1670, 2022. [Online]. Available: https://www.vldb.org/pvldb/
vol15/p1658-zhao.pdf.

[217] Z. Zhao, R. Christensen, F. Li, X. Hu, and K. Yi, “Random sampling over
joins revisited”, in Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018, G. Das, C. M. Jermaine, and P. A. Bernstein, Eds., ACM, 2018,

172

http://www.vldb.org/pvldb/vol13/p279-yang.pdf
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1109/ICDE48307.2020.00133
https://doi.org/10.1109/ICDE48307.2020.00133
https://www.vldb.org/pvldb/vol15/p1658-zhao.pdf
https://www.vldb.org/pvldb/vol15/p1658-zhao.pdf


BIBLIOGRAPHY

pp. 1525–1539. [Online]. Available: https://doi.org/10.1145/3183713.
3183739.

[218] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S. Yang, B. W. Zhao,
and S. Singh, “Torturing databases for fun and profit”, in 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI ’14,
Broomfield, CO, USA, October 6-8, 2014, J. Flinn and H. Levy, Eds., USENIX
Association, 2014, pp. 449–464. [Online]. Available: https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/zheng%5C_

mai.

[219] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and D. Wu, “Squirrel: Testing
database management systems with language validity and coverage feedback”,
in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 955–970.

[220] R. Zhu, Z. Wu, Y. Han, K. Zeng, A. Pfadler, Z. Qian, J. Zhou, and B. Cui,
“FLAT: fast, lightweight and accurate method for cardinality estimation”,
Proc. VLDB Endow., vol. 14, no. 9, pp. 1489–1502, 2021. [Online]. Available:
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf.

173

https://doi.org/10.1145/3183713.3183739
https://doi.org/10.1145/3183713.3183739
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng%5C_mai
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng%5C_mai
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng%5C_mai
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf


PUBLICATIONS DURING PHD STUDY

Publications during PhD Study

[1] Jinsheng Ba and M. Rigger, “Testing database engines via query plan
guidance”, in The 45th International Conference on Software Engineering
(ICSE’23), ACM SIGSOFT Distinguished Paper Award, May 2023.

[2] Jinsheng Ba and M. Rigger, “Finding performance issues in database engines
via cardinality estimation testing”, in The 46th International Conference on
Software Engineering (ICSE’24), Apr. 2024.

[3] Jinsheng Ba and M. Rigger, “Keep it simple: Testing databases via differ-
ential query plans”, Proc. ACM Manag. Data (SIGMOD’24), Jun. 2024.

[4] Jinsheng Ba and M. Rigger, “Towards a unified query plan representation
for database applications”, in Arxiv.

[5] Jinsheng Ba, G. J. Duck, and A. Roychoudhury, “Efficient greybox fuzzing
to detect memory errors”, in The 37th IEEE/ACM International Conference
on Automated Software Engineering (ASE’22), ACM SIGSOFT Distin-
guished Paper Award, Oct. 2022.

[6] Jinsheng Ba, M. Böhme, Z. Mirzamomen, and A. Roychoudhury, “State-
ful greybox fuzzing”, in 31st USENIX Security Symposium (SEC’22),
Boston, MA: USENIX Association, Aug. 2022, pp. 3255–3272, isbn: 978-1-
939133-31-1. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/ba.

This thesis includes [1, 2, 3, 4], which contribute to the thesis statement.

174

https://www.usenix.org/conference/usenixsecurity22/presentation/ba
https://www.usenix.org/conference/usenixsecurity22/presentation/ba

	Acknowledgments
	Contents
	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem
	Challenges and State of the Art
	Thesis Statement
	Research Overview
	Contributions
	Conceptual Contributions
	Technical Contributions
	Practical Contributions

	Research Scope
	Outline

	Background
	Database Management Systems
	Structured Query Language
	Query Plans
	Query Optimization
	Cardinality Estimation

	Bug-finding Techniques
	Testing
	Verification
	Test Suites and Benchmarking


	Cardinality Estimation Restriction Testing
	Introduction
	Performance Issue Study
	Approach
	Database and Query Generation
	Query Restriction
	Checking for Structural Similarity
	Validating Cardinality Estimation

	Evaluation
	Discussion
	Conclusion

	Differential Query Plans
	Introduction
	TQS Study
	TQS Summary
	Study Scope
	Data Preprocessing

	Approach
	Implementation
	Database and Query Generation
	Query Plan Enforcement
	Result Validation

	Evaluation
	Discussion
	Conclusion

	Query Plan Guidance
	Introduction
	Query Plan Study
	Approach
	Database States
	Query Generation and Validation
	Query Plan Collection
	Database State Mutation
	Implementation

	Evaluation
	Conclusion
	Data Availability

	Unified Query Plan Representation
	Introduction
	Query Plan Case Study
	Case Study Design
	Findings Overview
	Operations
	Properties
	Formats

	Unified Query Plan Representation
	Design
	Analysis

	Applications
	Discussion
	Conclusion

	Related Work
	Techniques for Finding Bugs
	Metamorphic Testing
	Differential Testing
	Fuzzing
	Formal Verification
	Performance Benchmarking
	Query Generation
	Database Generation

	Query Plans
	Query Plans in Testing
	Manipulating Query Plans
	Query Optimization
	Cardinality Estimation
	Applications Based on Serialized Query Plans

	Other Reliability Problems in DBMSs
	Environmental Reliability
	Configuration Reliability
	Transactional Reliability
	DBMS Application Reliability
	Bug Minimization and Deduplication

	Research Methodologies
	Simple Over Complex
	Standardization


	Conclusion
	Summary
	Future work

	Bibliography
	Publications during PhD Study

