
Metamorphic Coverage

JINSHENG BA, ETH Zurich, Switzerland
YUANCHENG JIANG, National University of Singapore, Singapore
MANUEL RIGGER, National University of Singapore, Singapore

Metamorphic testing is a widely used methodology that examines an expected relation between pairs of
executions to automatically find bugs, such as correctness bugs. We found that code coverage cannot accurately
measure the extent to which code is validated and mutation testing is computationally expensive for evaluating
metamorphic testing methods. In this work, we propose Metamorphic Coverage (MC), a coverage metric that
examines the distinct code executed by pairs of test inputs within metamorphic testing. Our intuition is that,
typically, a bug can be observed if the corresponding code is executed when executing either test input but
not the other one, so covering more differential code covered by pairs of test inputs might be more likely
to expose bugs. While most metamorphic testing methods have been based on this general intuition, our
work defines and systematically evaluates MC on five widely used metamorphic testing methods for testing
database engines, compilers, and constraint solvers. The code measured by MC overlaps with the bug-fix
locations of 50 of 64 bugs found by metamorphic testing methods, and MC has a stronger positive correlation
with bug numbers than line coverage. MC is 4x more sensitive than line coverage in distinguishing testing
methods’ effectiveness, and the average value of MC is 6x smaller than line coverage while still capturing
the part of the program that is being tested. MC required 359x less time than mutation testing. Based on a
case study for an automated database system testing approach, we demonstrate that when used for feedback
guidance, MC significantly outperforms code coverage, by finding 41% more bugs. Consequently, this work
might have broad applications for assessing metamorphic testing methods and improving test-case generation.

CCS Concepts: • Software and its engineering → Software testing and debugging; • General and
reference→ Metrics.

Additional Key Words and Phrases: Coverage metric, Metamorphic testing

ACM Reference Format:
Jinsheng Ba, Yuancheng Jiang, and Manuel Rigger. 2018. Metamorphic Coverage. In Proceedings of Make sure
to enter the correct conference title from your rights confirmation email (Conference acronym ’XX). ACM, New
York, NY, USA, 21 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Testing identifies bugs during software development and evolution, and it typically accounts for
half of the development expenses [24]. To automate testing, multiple methods have been proposed
that automatically generate or mutate inputs [21, 36], on which a so-called test oracle is applied to
determine whether the program’s execution behavior is expected [6].

Metamorphic testing is a popular methodology to tackle the test oracle problem [10, 50]. It has
been applied successfully in various domains, such as database systems [44, 45], compilers [32–34],
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2 Jinsheng Ba, Yuancheng Jiang, and Manuel Rigger

Listing 1. A faulty absolute-difference algorithm implementation.

1 int calculate_difference(int x, int y) {

2 if (x > y) {

3 return x - y;

4 } else {

5 return y - x + 1; // y - x;

6 }

7 }

and Satisfiability Modulo Theory (SMT) solvers [42, 56, 57]. Metamorphic testing has been proposed
as a methodology to test untestable systems, that is, systems for which it is difficult to specify the
exact behavior that is expected. Rather than providing a concrete expected output for a given input,
metamorphic testing uses a test input 𝑡𝑎 to derive a new input 𝑡𝑏 , for which a test oracle can be
provided that checks whether their outputs 𝑂𝑎 and 𝑂𝑏 comply with a relation, which is called
Metamorphic Relation. While metamorphic testing can be used to validate non-functional properties
such as performance [5] or information leakage [40], we focus on correctness in this paper.

When designing metamorphic testing methods, it is crucial to be able to assess their effectiveness,
especially for the researchers who develop such methods. According to our study on ten represen-
tative metamorphic testing methods, the most widely used metric to evaluate metamorphic testing
methods is the number of found bugs. However, this metric can only be measured a posteriori,
that is, after all the bugs found by metamorphic testing have been fixed, as identifying unique
bug-inducing test cases for incorrect-output bugs is an open problem [43, 58]. This is an issue for
researchers, who might want to gauge the potential of a metamorphic relation, before conducting a
large-scale testing campaign, which often spans over multiple months [18]. Additionally, the quality
of target programs can affect the number of unique bugs as a metric because an effective testing
method cannot find many bugs in a well-tested program. Existing a priori metrics, which can gauge
the potential of a method before conducting a large-scale testing campaign, have been sparsely
adopted. Code coverage is not often used, presumably because it more precisely captures how
effective a test input generator is. Mutation testing, despite advances in improving its efficiency [41],
is still often prohibitively expensive to use in practice.

In this paper, we proposeMetamorphic Coverage (MC), a simple and practical metric for evaluating
the quality of metamorphic testing methods. We believe that a test input pair 𝑡𝑎 and 𝑡𝑏 is typically
most effective in finding bugs when the inputs exercise different code paths, since a faulty location
might be covered by 𝑡𝑎 or 𝑡𝑏 , but not the other, resulting in potential violations of the metamorphic
relation. Therefore, our idea is to examine the difference in the code exercised by 𝑡𝑎 and 𝑡𝑏 to
measure the quality of metamorphic relations and metamorphic testing methods. MC is a coverage
metric based on code coverage, which can be any coverage criteria, such as line coverage. Unlike
the number of bugs, which is a posteriori metric, MC is a priori metric that can be measured
before conducting a bug-finding campaign. Compared to other coverage metrics, MC can more
accurately measure the effectiveness of metamorphic relations. Compared to mutation testing, MC
is a lightweight method as it does not require additional execution effort. ]

Listing 1 shows a motivating example. The function calculates the absolute difference between
two numbers. We consider two metamorphic relations. 𝑅1: if 𝑡𝑎 = (𝑥,𝑦) and 𝑡𝑏 = (𝑦, 𝑥), 𝑂𝑎 = 𝑂𝑏 ,
indicating swapping both input numbers should output the same result. 𝑅2: for an integer 𝑐 , if
𝑡𝑎 = (𝑥,𝑦) and 𝑡𝑏 = (𝑥 + 𝑐,𝑦 + 𝑐), 𝑂𝑎 = 𝑂𝑏 , indicating a constant added to both input numbers
should output the same result. For given inputs 𝑥 and 𝑦, if 𝑥 ≠ 𝑦, 𝑡𝑎 and 𝑡𝑏 of 𝑅1 cover the if and
else branches respectively, while 𝑡𝑎 and 𝑡𝑏 of 𝑅2 cover the same if or else branch. Given 𝑡𝑎1 = (2, 3),
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Metamorphic Coverage 3

𝑡𝑎2 = (6, 2) and 𝑐 = 1, 𝑅1 derives (3, 2) and (2, 6), and 𝑅2 derives (3, 4) and (7, 3). Both 𝑅1 and
𝑅2 cover all code lines: 𝐶𝑜𝑣 (𝑡𝑎) ∪ 𝐶𝑜𝑣 (𝑡𝑏) = {2 − 7}. However, only 𝑅1 can identify the bug in
line 5, which is caused by redundant +1. Thus, line coverage cannot distinguish the bug-finding
effectiveness of both relations. Suppose MC is based on line coverage, the code covered by MC is
MC(𝑡𝑎, 𝑡𝑏) = 𝐶𝑜𝑣 (𝑡𝑎)△𝐶𝑜𝑣 (𝑡𝑏) = {3, 5} for 𝑅1 and ∅ for 𝑅2. This suggests that 𝑅1 has a higher MC
and better bug-finding effectiveness than 𝑅2, corresponding to our intuition that a relation is more
effective in finding bugs when the inputs execute different code paths.
The intuition that the effectiveness of a metamorphic testing method depends on whether the

inputs on which the metamorphic relations are defined cover disjoint portions of the code is not
new. We believe most metamorphic testing methods are designed based on this intuition [32, 37, 44].
However, this intuition was only informally observed, claimed, or studied on small, artificial
metamorphic relations and programs [3, 8, 11]. We systematically evaluated it on widely used
metamorphic testing approaches. We also propose to utilize this intuition in other scenarios, such
as guidance-based fuzzing.
We evaluated MC on five metamorphic testing methods. The results show that MC is strongly

correlated to the bugs found by metamorphic testing methods, since the code covered by MC
overlaps with the fixes of 50 of 64 bugs found by the five metamorphic testing methods. MC
is 4× more sensitive than line coverage to distinguish method effectiveness and has the same
magnitude of time consumption as line coverage. We used MC as guidance for generating test
cases, and it could help the metamorphic testing methods NoREC [44] and TLP [45] in finding
41% more bugs than code coverage. This finding has potentially broad implications, enabling
efficient feedback-driven test-case generators for metamorphic testing. The artifact is available at
https://figshare.com/s/7d3a5e04c69b06204b7e.

Overall, we make the following contributions:
• We propose MC, a novel method to evaluate metamorphic testing methods by measuring the
differential code coverage of a pair of test inputs.

• We implemented and evaluated MC in a comprehensive study on five metamorphic testing
methods. The fixes of 50 of 64 bugs found by these methods overlap with the code measured
by MC.

2 Background
Code coverage. Code coverage is the percentage of the source code of a program executed by a
particular testing method or test suite. An assumption is that a testing method that covers more
code can find more bugs, so code coverage is typically used to assess a testing method’s adequacy.
Multiple code coverage criteria have been proposed [20], and in this paper, we consider the following
common coverage criteria:

• Line coverage, which measures the percentage of source code lines that have been executed;
• Statement coverage, which measures the percentage of instructions that have been executed;
• Branch coverage, which measures the percentage of control-flow branches (e.g. in if or

switch-case statements) that have been executed.
• Function coverage, which measures the percentage of functions that have been executed.

To evaluate a metamorphic relation, typically, the cumulative coverage of executing all pairs of 𝑡𝑎
and 𝑡𝑏 is measured [44, 57]. In Listing 1, line coverage is 100% (6/6) as all lines have been executed:
{2 − 7}. Statement coverage is the same as line coverage, because each line only has one statement.
Branch coverage is 100% (2/2), because both branches in lines 3 and 5 have been executed. The
function calculate_difference() is executed, so the function coverage is 100% (1/1). Code coverage
cannot distinguish both metamorphic relations as both have the same coverage.
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4 Jinsheng Ba, Yuancheng Jiang, and Manuel Rigger

Mutation testing.Mutation testing (also known as mutation analysis) is another methodology for
assessing the adequacy of a test suite by injecting mutations into programs [16, 29], and measuring
whether the test suite or testing method can identify them as bugs. Mutation testing requires a
set of predefined mutation operators {𝑚 |𝑚 ∈ 𝑀}, such as mutating an arithmetic operator − to +,
or removing a function call. We apply𝑀 to a program 𝑃 , and obtain a set of program mutations
{𝑚(𝑃) |𝑚 ∈ 𝑀}, each of which slightly differs from 𝑃 and aims to simulate a bug. Given a test suite
𝑋 , if any test 𝑥 ∈ 𝑋 fails when running a 𝑚(𝑃), then𝑚(𝑃) is said to be killed by 𝑋 , which we
denote as 𝑘𝑖𝑙𝑙𝑠 (𝑚(𝑃), 𝑥). Otherwise,𝑚(𝑃) is said to survive for 𝑋 . We expect that 𝑋 can kill more
of {𝑚(𝑃) |𝑚 ∈ 𝑀}, so the adequacy of the test suite 𝑋 is defined by the mutation score, which is
computed as the fraction of program mutations killed: | {𝑚 (𝑃 ) |𝑚∈𝑀&∃𝑥∈𝑋 :𝑘𝑖𝑙𝑙𝑠 (𝑚 (𝑃 ),𝑥 ) } |

| {𝑚 (𝑃 ) |𝑚∈𝑀 } | . To evaluate
the quality of metamorphic relations, mutation testing can be used to examine how many simulated
bugs can be identified as bugs by the metamorphic relations. In Listing 1, suppose the bug in line 5
is a mutation, executing any input violates 𝑅1. This mutation is killed and the mutation score is
100% (1/1). The mutation score is typically deemed a good indication of the fault detection ability
of a test suite [2, 20]. However, injecting mutations to simulate bugs is time-intensive [23], because
the program needs to be recompiled and executed for each mutant.

3 Metamorphic Evaluation Study
As a motivating study, we investigated what metrics were used to evaluate popular metamorphic
testing methods.

Studied metamorphic testing methods. As shown in Table 1, we chose ten representative metamor-
phic testing methods. They were published in well-known academic conferences of programming
languages and software engineering during the past 10 years (2014–2024). Referentially Transparent
Inputs (RTI ) [25] and Metamorphic Object Detection (MetaOD) [53] test AI systems. Equivalence
Modulo Inputs (EMI ) [32] and HirGen [37] test the compilation correctness of compilers. Non-
optimizing Reference Engine Construction (NoREC) [44] and Ternary Logic Partitioning (TLP) [45]
test the query processing functionality of Database Management Systems (DBMSs). YinYang [57]
and Skeletal Approximation Enumeration (SAE) [59] test Satisfiability Modulo Theory (SMT) solvers,
which are used to determine whether there exists an assignment to variables that satisfy a given
formula. Excessive Data Exposure Fuzzing (EDEFuzz) [39] and Metamorphic Relation Output Patterns
(MROP) [49] test whether Web applications return complete and correct content. To study how
these metamorphic testing methods were evaluated, we carefully examined the papers describing
the ten metamorphic testing methods.
Results. The column Metrics in Table 1 shows the four identified evaluation metrics used for

evaluating the ten studied metamorphic testing methods. Bugs refers to the number of found bugs
in the real world. Time represents the execution throughput. Overall, Bugs is the most prevalent
and important evaluation metric as it was used to evaluate all metamorphic testing methods. Three
methods EMI , HirGen, and NoREC were evaluated by Bugs only. Code Coverage and Mutation Score
are not commonly used, and we believe that the reason for this is the accuracy of code coverage
and time cost for mutation testing. For example, concerning code coverage, in NoREC [44], the
authors claimed that “code coverage is not particularly useful for fuzzing DBMS, since high coverage
for the core components (e.g., the query optimizer) can be achieved quickly.” TLP and YinYang measure
line coverage, while SAE measures line, function, and branch coverage. Only MROP reported a
mutation score. We suspect that other approaches did not adopt mutation testing due to the high
execution time needed to compute it. It shows that only the number of bugs, as a a posteriori metric,
is widely used, and no a priori metric is widely used—we understand an a priori metric as one that
eschews an extensive testing campaign that requires developers to fix reported issues to measure
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Metamorphic Coverage 5

Table 1. Metrics for evaluating metamorphic testing methods. Cov... is short for Code Coverage, which includes
line, function, and branch coverage. Mutat... is short for Mutation Score.

Metrics

Method Target Publication Bugs Cov... Mutat... Time

RTI [25] AI ICSE’20 ✓ ✓
MetaOD [53] AI ASE’20 ✓ ✓
EMI [32] Compiler PLDI’14 ✓
HirGen [37] Compiler ISSTA’23 ✓
NoREC [44] DBMS OOPSLA’20 ✓
TLP [45] DBMS FSE’20 ✓ ✓
YinYang [57] SMT PLDI’20 ✓ ✓
SAE [59] SMT FSE’21 ✓ ✓ ✓
EDEFuzz [39] Web ICSE’24 ✓ ✓
MROP [49] Web ICSE’18 ✓ ✓ ✓

the metric’s effectiveness. Additionally, we found that half of the studied methods were evaluated
by throughput, which shows that testing efficiency is also an important factor for metamorphic
testing methods.

No widely applicable a priori metric is used for evaluating metamorphic testing methods.

4 Approach
We propose Metamorphic Coverage (MC), a novel metric for evaluating the quality of metamorphic
testing methods by measuring the differential code executed by pairs of test inputs. For a pair of
test inputs 𝑡 = (𝑡𝑎, 𝑡𝑏), our intuition is that a bug can be observed if it affects the execution of either
𝑡𝑎 or 𝑡𝑏 but not the other, implying that 𝑡s that cover more differential code are more likely to find
bugs.

We define Metamorphic Coverage (MC) as follows: For an ordered pair of test inputs 𝑡 = (𝑡𝑎, 𝑡𝑏),
the code covered by metamorphic coverage is MC(𝑡) = 𝐶𝑜𝑣 (𝑡𝑎) △𝐶𝑜𝑣 (𝑡𝑏) = (𝐶𝑜𝑣 (𝑡𝑎) ∪𝐶𝑜𝑣 (𝑡𝑏)) −
(𝐶𝑜𝑣 (𝑡𝑎) ∩ 𝐶𝑜𝑣 (𝑡𝑏)), in which △ represents the differential coverage and 𝐶𝑜𝑣 (𝑡𝑎) and 𝐶𝑜𝑣 (𝑡𝑏)
represent the code covered by code coverage—any concrete code coverage metric, such as line
and branch coverage can be used—of executing 𝑡𝑎 and 𝑡𝑏 in the target system. Subsequently, for
conciseness, we refer to 𝐶𝑜𝑣 (𝑡𝑎)△𝐶𝑜𝑣 (𝑡𝑏) as differential coverage. Suppose 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑘 }, the
code covered by metamorphic coverage is MC(𝑇 ) =

⋃𝑘
𝑖=1 (MC(𝑡𝑖 )). Figure 1 illustrates how to

compute MC, and we explain the concrete steps to measure MC for each 𝑡 and to combine them as
follows.
Step 1: collecting coverage. Given a pair of test inputs 𝑡 = (𝑡𝑎, 𝑡𝑏), we first execute the target

program passing them as inputs, and measure their executed code for code coverage 𝐶𝑜𝑣 (𝑡𝑎)
and 𝐶𝑜𝑣 (𝑡𝑏) separately. 𝐶𝑜𝑣 () can be any metric, including line 𝐶𝑜𝑣𝑙𝑖𝑛𝑒 (), branch 𝐶𝑜𝑣𝑏𝑟𝑎𝑛𝑐ℎ (), and
function coverage 𝐶𝑜𝑣 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (). MC is not restricted to any specific coverage metrics. In Figure 1,
we show the example by 𝐶𝑜𝑣𝑙𝑖𝑛𝑒 () because it is straightforward to understand. Unless specified,
𝐶𝑜𝑣 () is short for 𝐶𝑜𝑣𝑙𝑖𝑛𝑒 (). In Figure 1, 𝐶𝑜𝑣 (𝑡𝑎) = {2, 4, 5, 6, 7}, and 𝐶𝑜𝑣 (𝑡𝑏) = {2, 3, 4, 6, 7}.

Step 2: deriving MC for 𝑡 . We calculate the code covered by MC by measuring the differential
coverage 𝐶𝑜𝑣 (𝑡𝑎) △𝐶𝑜𝑣 (𝑡𝑏). In Figure 1, MC(𝑡) = {3, 5}.
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6 Jinsheng Ba, Yuancheng Jiang, and Manuel Rigger

△

∪

Sum:
Lines 3,5

1.  int calculate_difference(int x, int y) {
2.      if (x > y) {
3.          return x - y;
4.      } else {
5.          return y - x + 1;
6.      }
7.  }

Coverage for test case ta: (2,3)
1.  int calculate_difference(int x, int y) {
2.      if (x > y) {
3.          return x - y;
4.      } else {
5.          return y - x + 1;
6.      }
7.  }

Coverage for test case ta: (2,3)
1.  int calculate_difference(int x, int y) {
2.      if (x > y) {
3.          return x - y;
4.      } else {
5.          return y - x + 1;
6.      }
7.  }

Coverage for test case tb: (3,2)
1.  int calculate_difference(int x, int y) {
2.      if (x > y) {
3.          return x - y;
4.      } else {
5.          return y - x + 1;
6.      }
7.  }

Coverage for test case tb: (3,2)

1.  int calculate_difference(int x, int y) {
2.      if (x > y) {
3.          return x - y;
4.      } else {
5.          return y - x + 1;
6.      }
7.  }

Metamorphic Coverage
1.  int calculate_difference(int x, int y) {
2.      if (x > y) {
3.          return x - y;
4.      } else {
5.          return y - x + 1;
6.      }
7.  }

Metamorphic Coverage

1.  int calculate_difference(int x, int y) {
2.      if (x > y) {
3.          return x - y;
4.      } else {
5.          return y - x + 1;
6.      }
7.  }

Metamorphic Coverage
1.  int calculate_difference(int x, int y) {
2.      if (x > y) {
3.          return x - y;
4.      } else {
5.          return y - x + 1;
6.      }
7.  }

Metamorphic Coverage

Fig. 1. Overview of MC. The gray color above refers to the code covered by executing the program passing 𝑡𝑎
and 𝑡𝑏 , and the gray color below refers to the code covered in differential coverage.

Step 3: deriving MC for 𝑇 . Step 2 measures the tested program parts, and we combine all MC(𝑡)
by unioning them to derive MC(𝑇 ) for measuring the tested program parts. In Figure 1, 𝑇 includes
two pairs of test inputs. The MC for the other pair of test inputs is {5}, so MC(𝑇 ) = {3, 5}.
Advantages. MC is effective and lightweight in evaluating the quality of metamorphic testing

methods. MC considers the code that is validated by metamorphic relations, instead of all executed
code. Therefore,MC is more sensitive to distinguishing the quality of different metamorphic testing
methods than code coverage. Computing MC does not require recompiling the program, which is
necessary for mutation testing, so MC is more lightweight than mutation testing. MC is slightly
more expensive than code coverage as computation effort is required to derive differential code
coverage.

Limitations. MC is not an absolute indicator of bug-finding effectiveness. First, bugs can be found
even if MC is zero. Suppose we have a one-line C program int output = input + 1000;. A possible
metamorphic relation is that if an input 𝑡𝑎 is bigger than another input 𝑡𝑏 , 𝑡𝑎’s output must be
bigger than 𝑡𝑏 ’s output. A bug occurs if 𝑡𝑎 is too big so that 𝑡𝑎 + 1000 overflows. However, in this
case, MC is zero, as both cases execute the same code. However, in Section 5, we will show that
this situation is not prevalent in practice. Second, an MC score of 100% does not mean the target
program is tested thoroughly. If 𝑡𝑎 covers all code, while 𝑡𝑏 does not trigger any program logic,
MC is 100%. Typically, we expect executing both inputs to trigger different logic, so that we can
compare them to find bugs. If either input does not trigger any logic, no logic is evaluated and the
metamorphic relation is too weak.
Implementation. We implemented MC for the C/C++ programming language. For step 1, we

measured code coverage by gcov,1 which is the most widely used source code coverage analysis
tool for C/C++. For step 2, we derive the coverage difference by implementing a plugin in gcovr ,2
which is a popular utility for managing gcov. gcovr supports multiple formats to store, analyze,
and visualize code coverage. We used the JSON format to store the code coverage collected from
step 1, because it is a structured format that facilitates machine processing. In step 2, our plugin
1https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
2https://gcovr.com
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derives a new coverage file in the same format of JSON, so that we can leverage gcovr to visualize
and analyze MC without additional implementation effort. The plugin was implemented in around
100 lines of Python code, suggesting that its low implementation effort might make the approach
widely applicable.

5 Evaluation
To evaluate the effectiveness and efficiency of MC for evaluating metamorphic testing methods, we
seek to answer the following questions:
Q.1 Effectiveness. Can MC evaluate the bug-finding capability of metamorphic testing methods?
Q.2 Sensitivity. To what extent can MC distinguish the bug-finding capability?
Q.3 Efficiency. What is the performance overhead of MC?
Q.4MC-guided Fuzzing. Can MC-based feedback guide test case generation?
Q.5 Configuration Sensitivity Analysis. How doesMC perform under different configurations?
Evaluated metamorphic testing methods.Within the studied methods in Table 1, we chose five

metamorphic testing methods whose source code and bug lists are publicly available for evaluation
and analysis of the effectiveness of MC based on found bugs. The chosen methods test three
important categories of programs: DBMSs, compilers, and SMT solvers.

For DBMSs, we chose NoREC and TLP . TLP includes five metamorphic relations for testing the
five SQL features: aggregate functions, the queries containing the clauses DISTINCT, WHERE, GROUP
BY, and HAVING. We named them 𝑇𝐿𝑃𝑎 , 𝑇𝐿𝑃𝑑 , 𝑇𝐿𝑃𝑤 , 𝑇𝐿𝑃𝑔, and 𝑇𝐿𝑃ℎ .
For compilers, we chose HirGen [37]. We identified two metamorphic relations in HirGen:

𝐻𝑖𝑟𝐺𝑒𝑛𝑜𝑝𝑡 and 𝐻𝑖𝑟𝐺𝑒𝑛𝑚𝑢𝑡 , both of which were illustrated in Section 3.3.2 of its paper [37]. Al-
though EMI found more bugs than HirGen, we did not consider EMI , because its source code is not
available and its bug reports include minimized bug-inducing test inputs, which we cannot use to
evaluate MC.

For SMT solvers, we chose YinYang [57] and SAE [59]. We identified two metamorphic relations
in YinYang: 𝑌𝑖𝑛𝑌𝑎𝑛𝑔𝑠𝑎𝑡 and 𝑌𝑖𝑛𝑌𝑎𝑛𝑔𝑢𝑛𝑠𝑎𝑡 , both of which realize YinYang for testing satisfied and
unsatisfied formulas.
Tested programs for evaluated metamorphic testing methods. Each metamorphic testing method

may be applied to more than one target program, for which we chose commonly tested programs.
For DBMSs, we chose SQLite and DuckDB, which were tested by NoREC and TLP . SQLite is the
most widely deployed DBMS,3 and DuckDB is a successor of SQLite. For compilers, we chose
TVM [9], which was tested by HirGen. For SMT solvers, we chose Z3 [15] and CVC4 [7], which
were tested by YinYang and SAE. TVM is a popular deep-learning compiler that optimizes the
performance of AI modules. Z3 and CVC4 are the two most popular SMT solvers that regularly
achieve high ranks in SMT competitions.4 The chosen programs are written in C/C++, for which
we can leverage mature code coverage tools, such as gcov.

Versions of tested programs. For Q1, we used SQLite (version 3.29.0), DuckDB (commit: a09d2f4
and bc9f086), TVM (commit: 124813f), Z3 (version 4.8.13), and CVC4 (commit: 16c2fe5), which
correspond to the major versions in which the bugs from the bug lists were found. For Q2, Q3, and
Q5, we used the latest versions supported by these metamorphic testing methods: SQLite (commit
c66c77), DuckDB (version 0.5.1), TVM (commit 124813f), Z3 (version 4.13.0), and CVC4 (commit
40eac7f). For Q4, we used the last versions of programs in which the metamorphic testing methods
can find bugs: SQLite (commit: 3a461f) and DuckDB (version 0.5.1).

3https://www.sqlite.org/mostdeployed.html
4https://smt-comp.github.io
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Seeds for evaluated metamorphic testing methods. The evaluated metamorphic testing methods
require seed inputs from which new test cases are generated. We used the default seeds used in
the evaluation of each method. Specifically, YinYang and SAE adopt the conventional SMT-LIB 2
benchmark as seeds, while other methods implement custom generators to construct suitable seeds,
since they require specific input structures. For example, NoREC mandates the presence of a WHERE

clause, but does not support queries with GROUP BY, which makes conventional test suites such as
TPC-DS unsuitable for its evaluation.

Baselines.We comparedMC against line coverage and mutation score. We measured line coverage
by gcov, and mutation score by Mull [17]. Mull is a state-of-the-art mutation testing framework
that enhances performance by injecting faults into programs during compilation and enabling them
respectively through environment variables. We used the 18 default mutators in Mull, including
arithmetic and comparison mutations. Mull identified 19,360, 14,363, 10,396, 6,628, and 21,068
mutations for SQLite, DuckDB, TVM, Z3, and CVC4, respectively. By comparing with them, we gain
insights into the benefits of MC against code coverage and mutation score metrics for evaluating
metamorphic testing methods.
Experimental infrastructure. We conducted all experiments on an AMD EPYC 7763 processor

that has 64 physical and 128 logical cores clocked at 2.45GHz. Our test machine uses Ubuntu 22.04
with 512 GB of RAM, and a maximum utilization of 60 cores. We repeated experiments 10 times for
statistically significant results.

Q.1 Effectiveness
We investigated whether the bug fixes overlap with the differential code, as examined by MC,
and whether MC is correlated with the number of bugs. Overlap indicates that MC covers at least
one line of the bug fix. A significant overlap and strong positive correlation would support the
applicability ofMC in evaluating the bug-finding effectiveness of metamorphic testing methods. We
evaluated both based on the historical bugs found by the evaluated metamorphic testing methods.
Preprocessing test cases.We observed that the bug reports of NoREC, TLP , and YinYang include

minimized bug-inducing test inputs, which were reduced to a single bug-inducing input, lacking the
second input as well as metamorphic relation, preventing us from directly evaluating MC. Listing 2
shows an example bug found by NoREC. Lines 1–4 show the minimized test input, in which only
one query exists, while NoREC requires a pair of queries to validate the metamorphic relation. To
address this in a best-effort manner and apply MC, we manually converted the test cases to trigger
the bug using the proposed metamorphic relations. For example, we converted the query in line 4
into a pair of queries in lines 6–7 according to the metamorphic relation of NoREC—the first query
is a subquery of the second query and both queries should return the same result. Therefore, 𝑡𝑎
includes lines 1–4 and 6, and 𝑡𝑏 includes lines 1–4 and 7. Such conversion steps were not always
possible, due to information lost during minimization. For example, for NoREC and TLP some test
cases lacked WHERE clauses needed for conversion. We successfully converted 27 bugs for SQLite and
20 bugs for DuckDB. For YinYang, we requested 14 original bug-inducing test inputs that include
metamorphic relations from the authors. For HirGen, the metamorphic relations were explicit in all
bug-inducing test inputs, so we directly used them. For SAE, most bugs were crash bugs, and we
did not find any bug-inducing test inputs for the metamorphic relations. Last, we processed the
test inputs only when the buggy behaviors could be reproduced and their corresponding bug fixes
could be found in bug reports or were provided by authors.

Bug fix overlap. Table 2 shows the number of bugs and the relations of their fixes to MC. Within
the total of 65 bug fixes, 50 bug fixes overlap with MC. 76.9% of bug fixes are directly located in the
code of MC, showing a strong correlation between both. These bugs, whose fixes do not overlap
with differential code, occur because buggy functions are called in different code locations.
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Listing 2. Deriving a minimized test input into a pair of test inputs that comply to the metamorphic relation.

1 CREATE TABLE t0(c0);

2 INSERT INTO t0(c0) VALUES (NULL);

3 CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;

4 SELECT * FROM t0 WHERE (t0.c0 IS FALSE) IS FALSE;

5 ------------------------⇓------------------------
6 SELECT COUNT (*) FROM t0 WHERE (t0.c0 IS FALSE) IS FALSE;

7 SELECT SUM(count) FROM (SELECT ((t0.c0 IS FALSE) IS FALSE) as count FROM t0) as

asdf;

Table 2. Previously found bugs and their relations to MC.

Program All Overlapping Non-overlapping

SQLite 27 18 9
DuckDB 20 15 5
TVM 2 2 0
Z3 14 14 0
CVC4 1 1 0
Sum: 64 50 14

Listing 3. SQLite bug a6408d42, whose fix 45ff2b1f is overlapped withMC.

1 CREATE TABLE t0(c0);

2 INSERT INTO t0(c0) VALUES (NULL);

3 CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;

4 SELECT COUNT (*) FROM t0 WHERE (t0.c0 IS FALSE) IS FALSE; -- {0}

5 SELECT SUM(count) FROM (SELECT (t0.c0 IS FALSE) IS FALSE as count FROM t0) as

asdf; -- {1}

6
7 --- src/expr.c

8 +++ src/expr.c

9 @@ -5034,11 +5034 ,11 @@

10 switch( p->op ){

11 ...

12 case TK_TRUTH: {

13 if( seenNot ) return 0;

14 if( p->op2!=TK_IS ) return 0;

15 - return exprImpliesNotNull(pParse , p->pLeft , pNN , iTab , seenNot);

16 + return exprImpliesNotNull(pParse , p->pLeft , pNN , iTab , 1);

17 }

18 ...

An example of the relation overlapping. Listing 3 shows a bug-inducing test input for a bug found
by NoREC. The queries in lines 4 and 5 return inconsistent results, which violate NoREC. Lines 15
and 16 show the code fix. The gray color represents the code covered by MC. The bug’s root cause
was an incorrect assumption that 𝑥 is always not null for the expression (x IS FALSE)IS FALSE. This
assumption is specified by the last parameter of the function exprImpliesNotNull and is executed
for the first query in line 15. The second query evaluates the expression differently and does not
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Listing 4. SQLite bug 6ef984af, whose code fix 5c118617 is not overlapped withMC.

1 CREATE TABLE t0(c0 TEXT PRIMARY KEY);

2 INSERT INTO t0(c0) VALUES ('');

3 SELECT COUNT (*) FROM t0 WHERE (t0.c0, TRUE) > (CAST('' AS REAL), FALSE); -- {0}

4 SELECT SUM(COUNT) FROM (SELECT ((t0.c0, TRUE) > (CAST('' AS REAL), FALSE)) IS

TRUE as count FROM t0) as asdf; -- {1}

5
6 --- src/expr.c

7 +++ src/expr.c

8 @@ -68,10 +68,13 @@

9 char sqlite3ExprAffinity(Expr *pExpr){

10 ...

11 + if( op== TK_VECTOR ){

12 + return sqlite3ExprAffinity(pExpr ->x.pList ->a[0]. pExpr);

13 + }

14 return pExpr ->affExpr;

15 }

16 ...

17 aff = sqlite3ExprAffinity(pExpr ->pLeft);

18 ...

19 pCol ->affinity = sqlite3ExprAffinity(p);

Table 3. Pearson Correlation Coefficient of line coverage andMC to bug numbers.

Program Line Coverage MC Improvement

SQLite 0.71 0.94 +0.23
DuckDB 0.86 0.94 +0.08
Z3 0.71 0.78 +0.07

Avg: +0.13

execute line 15. The code of MC covers the bug fix in line 15, which is only executed for the first
query.
An example of the relation non-overlapping. Listing 4 shows another bug-inducing test input

for the bug 6ef984af found by NoREC. Similarly, NoREC finds this bug, because the queries in
lines 3 and 4 return inconsistent results. This bug’s root cause was a missed case in the function
sqlite3ExprAffinity as fixed by lines 11–13. Although this function is executed for both queries, it is
called in different code locations. In line 17, the function call is executed for both queries, and does
not trigger the is executed only for the second query, and triggers the special case in line 11, so
that the bug is observed.
Bug correlation. Based on the bugs listed in Table 2, we randomly sampled varying numbers

of bugs to form multiple sets. For each set, we measured line coverage and MC, repeating this
process 50 times. Figure 2 illustrates the relationship between the number of bugs in each set and
the corresponding line coverage and MC scores. Visually, MC increases more steeply than line
coverage as the number of bugs grows. To quantify this observation, we computed the Pearson
Correlation Coefficient (PCC) [14] between each metric (line coverage and MC) and the number of
bugs, as reported in Table 3. PCC measures the linear correlation between two variables, ranging
from −1 to 1, with higher values indicating stronger positive correlation. Overall, MC shows a
stronger positive correlation with the number of bugs than line coverage as the PCC of MC is
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Fig. 2. Line coverage and MC against the number of bugs.

above 0.9 for both SQLite and DuckDB. Compared with line coverage, MC improves the PCC by an
average of 0.13. We excluded TVM and CVC4 from the analysis due to an insufficient number of
bugs. The mutation score was not included in Figure 2, as it consistently approaches 100%—each
test case typically triggers buggy behavior, making the metric uninformative in this context.

MC is strongly correlated to the bugs found by metamorphic testing methods as MC overlaps
with the fixes of 50 of 64 bugs found by metamorphic testing methods, and its PCC is above 0.9
for SQLite and DuckDB.

Q.2 Sensitivity
We evaluated the sensitivity and metric value range of MC for evaluating metamorphic testing
methods and compared that with line coverage andmutation score. Sensitivity refers to the capability
of differentiating test inputs and was proposed to evaluate various coverage metrics in fuzzing
techniques [52]. We used the sensitivity of the various metrics to assess this aspect. Metric value
range refers to the possible value range of a metric. In Q1, we showed that differential code is
strongly related to bug fixes, which are in the tested program logic. Considering that line coverage
subsumes MC, if MC is smaller than line coverage, MC can represent the bug-finding effectiveness
in finer granularity.

Methodology. We measured MC, line coverage, and mutation scores for the test inputs generated
by the evaluated metamorphic testing methods. First, we ran each metamorphic testing method to
randomly generate 100 pairs of test inputs as a test suite. 100 is a widely accepted setting for test
suite size and has been used for previous work [2]. 100 is also a reasonable number, as each coverage
data produced by gcov requires one minute on average on our machine. We repeated this generation
10 times to generate 10 test suites and measured the average code coverage, mutation score, and
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Table 4. The average number of line coverage, mutation score, and MC of metamorphic testing methods
across 10 test suites.

Program Method Line... Mutation... MC

SQLite

𝑇𝐿𝑃𝑤 21.84% 1.91% 1.96%
𝑇𝐿𝑃𝑔 22.49% 1.83% 1.87%
𝑇𝐿𝑃ℎ 22.61% 1.70% 1.42%
𝑇𝐿𝑃𝑑 22.14% 1.70% 2.14%
𝑇𝐿𝑃𝑎 22.79% 2.47% 2.56%
NoREC 22.68% 1.59% 2.94%

DuckDB

𝑇𝐿𝑃𝑤 20.45% 2.33% 3.37%
𝑇𝐿𝑃𝑔 21.47% 2.55% 3.82%
𝑇𝐿𝑃ℎ 21.17% 2.39% 3.45%
𝑇𝐿𝑃𝑑 21.29% 2.13% 3.52%
𝑇𝐿𝑃𝑎 20.99% 2.64% 4.31%
NoREC 20.35% 1.68% 5.97%

TVM 𝐻𝑖𝑟𝐺𝑒𝑛𝑚𝑢𝑡 15.30% 4.36% 3.27%
𝐻𝑖𝑟𝐺𝑒𝑛𝑜𝑝𝑡 17.53% N/A 5.08%

Z3
𝑌𝑖𝑛𝑌𝑎𝑛𝑔𝑠𝑎𝑡 14.89% 0.01% 2.84%
𝑌𝑖𝑛𝑌𝑎𝑛𝑔𝑢𝑛𝑠𝑎𝑡 16.49% 0.01% 4.13%
SAE 14.80% N/A 3.75%

CVC4
𝑌𝑖𝑛𝑌𝑎𝑛𝑔𝑠𝑎𝑡 22.89% 0.01% 2.85%
𝑌𝑖𝑛𝑌𝑎𝑛𝑔𝑢𝑛𝑠𝑎𝑡 25.21% 0.01% 1.86%
SAE 19.67% N/A 2.17%

MC. To measure line coverage and MC, we first measured the line coverage for each test input of a
test suite, and then calculated the cumulative coverage as the line coverage and the differential
coverage as MC for the test suite. For mutation score, although Mull already implements various
optimizations by injecting all mutations during compilation without the need for recompilation,
the time overhead is still significant due to the number of mutants. To measure the mutation scores
in a feasible time budget, we ran Mull in 50 parallel threads, which do not depend on each other.
We deemed a mutation to be killed only when the results violate the metamorphic relation. For
each testing method, we re-implemented the metamorphic relation within Mull, so that it can
identify whether the execution results violate the metamorphic relation. Most testing methods
directly produce pairs of inputs, while only YinYang fuses two inputs into one and examines their
consistency, so its testing iteration involves three test inputs. To construct pairs of inputs, we merge
the first two test inputs as 𝑡𝑎 and deem the third input as 𝑡𝑏 .

Challenges of measuring mutation scores. Measuring mutation scores for real-world metamorphic
testing methods faces practical issues. 𝐻𝑖𝑟𝐺𝑒𝑛𝑜𝑝𝑡 and SAE had a high false alarm rate, incurring
a 100% mutation score, which was meaningless, so we ignored their mutation scores. 𝐻𝑖𝑟𝐺𝑒𝑛𝑜𝑝𝑡
detects bugs by checking consistencies before and after optimizations. However, some optimization
strategies are incompatible with specificmodels, and incur errors violating themetamorphic relation.
We reported the false alarm issue to the authors of HirGen, and they confirmed our findings. SAE
examines whether a pair of test inputs are satisfied or unsatisfied at the same time, while we
observed that executing the second test input may return multiple results, instead of one. We raised
GitHub issues to ask the authors of SAE, but have not received any response as of the time of
writing this paper. For 𝑌𝑖𝑛𝑌𝑎𝑛𝑔𝑠𝑎𝑡 and 𝑌𝑖𝑛𝑌𝑎𝑛𝑔𝑢𝑛𝑠𝑎𝑡 on Z3 and CVC4, the mutation score is around
0.01%. The reason is that YinYang validates the results only when the first test inputs return the
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Table 5. Coefficient of variation of line coverage, mutation score, andMC.

Program Line Coverage Mutation Score MC

SQLite 0.02 0.17 0.25
DuckDB 0.02 0.15 0.24
TVM 0.10 N/A 0.31
Z3 0.06 N/A 0.19
CVC4 0.12 N/A 0.22
Avg: 0.06 0.16 0.24

same SAT or UNSAT results. A random mutation can easily cause either input to become invalid or
both inputs to return inconsistent results, and YinYang does not work for such mutated programs.

Sensitivity. To quantify the sensitivity of various metrics, we evaluated the Coefficient of Variation
(CV) for Table 4. CV [1] measures the variability of data independently of the absolute numbers
and is defined as the ratio of the standard deviation 𝜎 to the mean 𝜇, 𝐶𝑉 = 𝜎

𝜇
. If a metric has a

higher value of CV, it is more sensitive than other metrics to distinguish the quality of test suites.
Table 5 shows our results. Across the five programs, the average CV of MC is 0.24, which is

4× higher than the CV of line coverage, which is 0.06. For each program, the CV of MC is bigger
than mutation score, and the line coverage. For mutation scores, we evaluated the average value
across SQLite and DuckDB, because mutation scores for other programs are not fully available.
The results show that MC is significantly more sensitive to differentiating metamorphic relations
than line coverage and also outperforms the mutation score.
Metric value range. Table 4 shows average line coverage, mutation score, and MC across 10

randomly generated test suites by metamorphic testing methods. Overall, MC is 6× smaller than
line coverage. Considering that MC is a subset of line coverage and is strongly correlated to the
found bugs,MC can quantify bug-finding capability in finer granularity. The relatively small size of
MC suggests that a significant portion of the program remains untested, highlighting the potential
for discovering new metamorphic relations to improve testing.

MC can efficiently distinguish the quality of metamorphic testing as it is 4× more sensitive than
line coverage and mutation score for evaluating metamorphic testing. The average value of MC
is 6× smaller than line coverage, while still capturing the tested program logic.

Q.3 Efficiency
While our major questions are about the evaluation effectiveness of MC, performance overhead is
also an important consideration for evaluation metrics, as a high overhead might limit a metric’s
applicability. We evaluated the execution time of MC, line coverage, and mutation score based on
the same experimental set-up and data in Q2. We derived the execution time by multiplying the
actual execution time by 50× as we ran Mull in 50 parallel threads.
Results. Table 6 shows the average execution time for measuring line coverage, mutation score,

and MC across 10 test suites in Q2. Overall, measuring MC consumed the same magnitude of
time as measuring line coverage, and 359x less time than measuring mutation score. Mutation
score consumes significant time due to its computation complexity. This is particularly noticeable
on CVC4, which consumes the most time, because a random mutation can easily cause CVC4 to
hang. We set a timeout of 10 minutes for Mull to solve this issue. Compared to mutation score,
MC is more lightweight, because it consumes much less time and does not require test oracles
for validating metamorphic relations. Compared to line coverage, MC is a more efficient method,
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Table 6. Average time (dd:hh:mm:ss) consumption of measuring line coverage, mutation score, andMC on
metamorphic testing methods across 10 test suites.

Program Line Coverage Mutation Score MC

SQLite 00d:00h:33m:24s 02d:11h:20m:45s 00d:00h:36m:01s
DuckDB 00d:01h:16m:06s 02d:21h:51m:02s 00d:01h:22m:27s
TVM 00d:04h:06m:44s 05d:02h:46m:10s 00d:04h:17m:44s
Z3 00d:07h:26m:27s 11d:21h:09m:55s 00d:07h:46m:47s
CVC4 00d:05h:11m:10s 240d:01h:31m:40s 00d:05h:28m:45s
Avg: 00d:03h:18m:22s 52d:11h:31m:30s 00d:03h:30m:33s

because it can represent the checked code by a metamorphic testing method, but only moderately
increases execution time.

MC is resource-efficient as it requires 359x less time than mutation score and has the same
magnitude of time consumption as line coverage.

Q.4 MC-guided Fuzzing
Multiple fuzzing methods use metrics, such as branch coverage [54] and code execution count [35],
as guidance to generate or mutate test inputs and have found a large number of bugs. Apart from
evaluating the effectiveness of metamorphic testing methods, we evaluated whether MC can be
used as guidance to generate more diverse test inputs increasing the likelihood of finding bugs.
Methodology. For the evaluated metamorphic testing methods, NoREC and TLP involve a test

input generation process, while HirGen, YinYang, and SAE require user-provided test inputs as 𝑡𝑎
for deriving 𝑡𝑏 , so we evaluated whether MC can help NoREC and TLP generate diverse test inputs.
NoREC and TLP are implemented in SQLancer , which generates test inputs by Query Plan Guidance
(QPG) [4]. Given a database, QPG randomly generates queries and examines their query plans. If no
new unique query plan has been seen for a fixed number of iterations, QPG mutates the database
and continues to randomly generate queries on the new database. For a fair comparison, we used
QPG as a reference and reused its test input generation workflow. Specifically, we replaced QPG
as a feedback mechanism with code coverage and MC, and mutated the database if the coverage
was not increased for a fixed number of iterations. We reused the instrumentation component of
AFL++ [19] to collect branch coverage and derived MC. We refer to both methods as Code Coverage
Guidance (CCG) and Metamorphic Coverage Guidance (MCG), respectively.
Results. Figure 3 shows the average number of bugs found by CCG, MCG, and QPG. DuckDB

terminated before 24 hours due to crash bugs. For 𝑇𝐿𝑃𝑎 in SQLite, all guidance techniques found
more than 100 bug-inducing test cases in five minutes, so it cannot distinguish the contributions of
guidance, and we excluded it. Overall, more bugs were found in DuckDB than in SQLite, so the gap
between guidance is clearer in DuckDB. On average, CCG found 4.4 bugs, MCG found 6.2, and QPG
found 6.5 bugs in 24 hours. MCG outperforms CCG on 10 of 11 targets. The result shows that MCG
can help metamorphic testing methods generate more diverse test inputs for finding bugs. The
only exception is 𝑇𝐿𝑃𝑎 in DuckDB, in which most found bugs are unexpected errors. Unexpected
errors refer to unhandled exceptions in programs, such as assertions, and can be found by a test
input, instead of a pair of test inputs. SQLancer can find these unexpected errors by checking error
information without NoREC and TLP . Therefore, CCG helps find more bugs. MCG outperforms
QPG on 5 of 11 targets. This is unsurprising, as QPG was designed as a domain-specific feedback
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Fig. 3. Average number of bugs found by Code Coverage Guidance, Metamorphic Coverage Guidance, and
Query Plan Guidance across 10 runs in 24 hours.

Table 7. Coefficient of variation of MC based on branch and function coverage.

Branch Coverage Function Coverage

Program Branch Coverage MC Function Coverage MC

SQLite 0.02 0.37 0.01 0.50
DuckDB 0.02 0.32 0.02 0.35
TVM 0.10 0.26 0.12 0.15
Z3 0.19 0.20 0.07 0.22
CVC4 0.33 0.35 0.09 0.50
Avg: 0.13 0.30 0.06 0.34

metric based on the insight into how DBMSs execute test inputs, while MC can be applied to any
metamorphic testing approach, and thus eschews additional domain-specific insights.

Using MC as guidance improved bug-finding efficiency by 41% on NoREC and TLP compared to
code coverage, although domain-specific strategies like QPG often perform best.

Q.5 Configuration Sensitivity Analysis
Various code coverage metrics. We evaluated the sensitivity of MC using different kinds of code
coverage metrics. As we explained in Section 4,MC is not restricted to line coverage, so we evaluated
whether MC performs similarly under branch and function coverage. Specifically, we reused the
same experimental set-up and data in Q2, and examined the CV ofMC based on branch and function
coverage.

Results. Table 7 shows the CV of MC based on branch and function coverage. On average, MC’s
CV is 2.3× more than branch coverage’s CV, and 5.7× more than function coverage. Similar to
Table 5, MC is significantly more sensitive than line, branch, and function coverage to distinguish
the quality of metamorphic testing methods. The result shows that MC consistently outperforms
code coverage irrespective of at what granularity it is applied.
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Table 8. Coefficient of variation of MC based on test suite sizes of 50 and 200.

Size 50 Size 200

Program Line Coverage MC Line Coverage MC

SQLite 0.02 0.36 0.02 0.37
DuckDB 0.04 0.38 0.02 0.37
TVM 0.15 0.56 0.11 0.29
Z3 0.13 0.28 0.11 0.22
CVC4 0.21 0.43 0.17 0.37
Avg: 0.11 0.40 0.09 0.32

Test suite size. For Q2, we evaluatedMC based on test suites of 100 test inputs. To answer whether
different test suite sizes affect the sensitivity of MC, we examined the CV of MC based on test suite
sizes of 50 and 200, which are similar to the sizes used in the previous work [2]. Due to the resource
limitation, we did not consider a bigger size.
Results. Table 8 shows the CV of MC based on test suite sizes 50 and 200. We observed that the

results are close to the results in Table 5 that MC is around 4× more sensitive than line coverage. It
shows that test suite sizes have no significant effect on the experiments’ results. The observation
that test suite size has no significant impact on metric evaluation is consistent with previous
work [2, 13].

MC performs similarly under branch and function coverage, and under different test suite sizes.

6 Discussion
Path to adoption. We believe that MC has the potential for wide adoption. From a conceptual
perspective, MC is easy to understand, as it calculates the differential code executed by pairs of
test inputs. From an implementation perspective, MC is easy to implement as we implemented MC
in around 100 lines of Python code for the C/C++ programming language. From an applicability
perspective,MC can be implemented on top of existing widely-used coverage measurement tools in
other languages, such as JaCoCo for Java, or Coverage.py for Python. From an empirical perspective,
our study on widely-used metamorphic relations and systems suggests the effectiveness of MC.

Improving metamorphic testing methods. MC could be used to identify metamorphic relations for
code that is not covered by existing metamorphic relations. From our evaluation, we found that
most metamorphic testing methods focus on specific features, so theirMC is small (i.e., all evaluated
metamorphic testing methods have an MC of less than 5%). For future research on metamorphic
testing methods, we believe that systematically designing metamorphic relations to fill MC gaps
could significantly improve the bug-finding capability.

Metamorphic relation design guided by MC. Metamorphic relation design is largely a manual and
creative task, making it difficult to isolate MC as a quantifiable factor in an automated experiment.
Rather, we show an example to show how MC guides the design of new metamorphic relations. In
Listing 5, suppose we start with Metamorphic Relation 1 (MR1): 𝑎𝑏𝑠 (𝑥) == 𝑎𝑏𝑠 (−𝑥). For example,
𝑎𝑏𝑠 (3) == 𝑎𝑏𝑠 (−3) and 𝑎𝑏𝑠 (0) == 𝑎𝑏𝑠 (−0). MR1 covers the first and third branches (i.e., lines 2,
3, 6, and 7) differently, so its MC covers the two branches without the second branch at lines 4
and 5. To fill this gap, we need a metamorphic relation in which one test case takes the x == 0
branch while the other takes a different branch. This means the two inputs must include zero and
a non-zero value. We can propose Metamorphic Relation 2 (MR2): 𝑎𝑏𝑠 (𝑥) ≥ 𝑎𝑏𝑠 (0). For instance,
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Listing 5. An example of designing new metamorphci relations guided byMC.

1 int abs(int x) {

2 if (x < 0)

3 return -x;

4 else if (x == 0)

5 return 3; // Bug

6 else

7 return x;

8 }

𝑎𝑏𝑠 (3) ≥ 𝑎𝑏𝑠 (0) or 𝑎𝑏𝑠 (−5) ≥ 𝑎𝑏𝑠 (0). In this case, MC covers all branches, and MR2 exposes the
bug, as 𝑎𝑏𝑠 (2) < 𝑎𝑏𝑠 (0).

MC on metamorphic relations with multiple inputs and outputs. In Figure 1, we defined MC based
on metamorphic relations expressed as test pairs 𝑡 = (𝑡𝑎, 𝑡𝑏), where 𝑡𝑎 and 𝑡𝑏 each correspond to
a single input. However, some relations require multiple inputs in either 𝑡𝑎 or 𝑡𝑏 . For example,
YinYang, evaluated in Section 5, defines 𝑡𝑎 using two inputs. In such cases, we treat the union of the
code coverage from all inputs in 𝑡𝑎 as the coverage of 𝑡𝑎 . This step would not affect the effectiveness
of MC, as it aims to capture the differential coverage between 𝑡𝑎 and 𝑡𝑏 , reflecting the likelihood of
exposing violations of the metamorphic relation.

Threats to Validity. The evaluation of MC faces potential threats to validity. A concern is internal
validity, that is, the degree to which our results minimize systematic error. MC was compared to
other metrics based on randomly generated test suites. The randomness process may limit the
reproducibility of our results. To mitigate the risk, we repeated all experiments 10 times to account
for potential performance fluctuations. The other concern is external validity, that is, the degree to
which our results can be generalized to and across other metamorphic testing methods. We selected
five representative metamorphic testing methods in three commonly tested domains. According to
our study, metamorphic testing methods follow similar testing mechanisms, suggesting that our
results generalize to other metamorphic testing methods.

7 Related Work
Metamorphic testing. Several studies present a comprehensive overview of metamorphic testing [12,
48, 50]. As shown in Table 1, we investigated the evaluation metrics of ten metamorphic testing
methods, which have cumulatively found thousands of bugs. However, in this work, rather than
studying existing metamorphic relations or proposing a new one, our core contribution is a novel
coverage metric to evaluate metamorphic testing methods and a comprehensive evaluation thereof.
Evaluating metamorphic relations. Empirical studies were conducted to investigate the effec-

tiveness of metamorphic relations. These include case studies by Chen et al. [11] on the shortest
path program, by Asrafi et al. [3] on two small programs with manually crafted metamorphic
relations, and by Guderlei et al. [38] on two small programs with manually crafted metamorphic
relations. The authors of the above studies consistently observed that the metamorphic relations
that cause different software execution behaviors should have high fault detection ability. However,
the concept of “difference” between executions was not clearly defined. Cao et al. [8] studied vari-
ous notions of difference and bug-finding effectiveness. However, all of the above papers studied
metamorphic relations specifically designed for the study, rather than metamorphic relations that
have demonstrated their bug-finding capabilities on important and well-tested systems. Unlike
these works that focus on empirical analyses, in this work, we quantitatively define a metric to
evaluate the quality of metamorphic testing methods and evaluate them on widely used programs
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and effective metamorphic relations, both of which have been tested in the real world. We also
propose a MC-guided fuzzing to utilize MC to increase the likelihood of finding bugs.
Oracle coverage. Some metrics have been proposed to evaluate test oracles, mostly assertions,

which typically check invariants when executing a single test input. Koster et al. [31] proposed
state coverage, which measures the percentage of the output-relevant variables checked by an
assertion. Vanoverberghe et al. [51] improved state coverage to measure the percentage of only
program variables that are read by the assertion. Schuler et al. [46, 47] proposed checked coverage,
which measures the percentage of statements checked by an assertion based on all statements that
influence the assertion by control flow or data flow. Hossain et al. [26] proposed to reduce the
total space of checked coverage by measuring only the statements that influence at least one value
checked by the assertion. In this work, we propose MC to evaluate metamorphic testing, which
compares discrepancies between two test inputs instead of an input.
Coverage criteria. A large body of work considers the relationship between coverage criteria

and fault detection. Gligoric et al. [20] examined the correlations of various coverage to mutation
testing and concluded that branch coverage and intra-procedural acyclic path coverage perform
best to predict the mutation score, which is assumed to be a silver criterion for evaluating test suites.
Gopinath et al. [22] further studied the problem and concluded that statement coverage performs
best. Inozemtseva et al. [27] investigated the correlation between various coverage criteria and the
mutation score for different random subsets of test suites and found a low to moderate correlation
between coverage and effectiveness when the number of test inputs in the suite is controlled for.
Kakarla [30] and Inozemtseva [28] demonstrated a linear relationship between mutation score
and various coverage criteria for individual programs. Wei et al. [55] examined branch coverage
as a quality measure showing that branch coverage behavior was consistent across many runs,
while fault detection varied widely. Existing work mainly focuses on evaluating the correlation of
various coverage criteria to mutation scores. In contrast, in this work, we propose a novel coverage
criterion MC for evaluating metamorphic testing.

8 Conclusion
In this paper, we have proposed a novel coverage metric, Metamorphic Coverage (MC), to evaluate
the quality of metamorphic testing methods. The core idea of MC is that a bug can be observed
if the faulty code path is executed by a test input, but not the other test input. Therefore, if a
metamorphic testing method covers more differential code between the execution of pairs of test
inputs, it is more likely to find bugs. The results show that MC is strongly correlated to the bugs
found by metamorphic testing methods as the code covered by MC overlaps with the fixes of 50
of 64 bugs found by the five metamorphic testing methods. MC is 4× more sensitive than line
coverage in distinguishing the quality of metamorphic testing methods and is similarly lightweight
in terms of time consumption as line coverage. Despite these promising results, MC is no panacea,
similar to code coverage, as achieving a high MC is possible even if the metamorphic test oracle
has low bug-finding effectiveness and vice versa. In the future, we believe that MC can be broadly
applied to assess metamorphic testing methods and improve test-case generation by using MC as a
metric in feedback-guided automated testing.
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