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Query optimizers perform various optimizations, many of which have been proposed to optimize joins. It is

pivotal that these optimizations are correct, meaning that they should be extensively tested. Besides manually

written tests, automated testing approaches have gained broad adoption. Such approaches semi-randomly

generate databases and queries. More importantly, they provide a so-called test oracle that can deduce whether

the system’s result is correct. Recently, researchers have proposed a novel testing approach called Transformed
Query Synthesis (TQS) specifically designed to find logic bugs in join optimizations. TQS is a sophisticated
approach that splits a given input table into several sub-tables and validates the results of the queries that

join these sub-tables by retrieving the given table. We studied TQS’s bug reports, and found that 14 of 15

unique bugs were reported by showing discrepancies in executing the same query with different query plans.

Therefore, in this work, we propose a simple alternative approach to TQS. Our approach enforces different

query plans for the same query and validates that the results are consistent. We refer to this approach as

Differential Query Plan (DQP) testing. DQP can reproduce 14 of the 15 unique bugs found by TQS, and found 26
previously unknown and unique bugs. These results demonstrate that a simple approach with limited novelty

can be as effective as a complex, conceptually appealing approach. Additionally, DQP is complementary to

other testing approaches for finding logic bugs. 81% of the logic bugs found by DQP cannot be found by NoREC
and TLP , whereas DQP overlooked 86% of the bugs found by NoREC and TLP . We hope that the practicality of

our approach—we implemented in less than 100 lines of code per system—will lead to its wide adoption.
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storage security.
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1 INTRODUCTION
A key feature of relational Database Management Systems (DBMSs) is to join data in multiple tables

using a JOIN. Various strategies and optimizations have been proposed to optimize the execution

of joins [14, 15, 33]. Given the complexity of such optimizations, query optimizers might apply a

semantically incorrect optimization, which could result in incorrect results being produced. These

errors are called logic bugs. It is challenging to find logic bugs as they silently produce incorrect

results—unlike, for example, crash bugs [50, 51], which cause the process to be terminated. In

Listing 1, the second query at line 8 triggers a logic bug in the DBMS, as it should return a non-zero

result, instead of zero.

Recently, automated testing approaches for DBMSs have gained broad adoption to find logic

bugs [25, 40–42], as they can often find many bugs that have been overlooked by manually written
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Listing 1. A bug found that may incur money loss by Differential Query Plans (DQP) in MySQL.

1 CREATE TABLE user(user_id DECIMAL PRIMARY KEY);

2 CREATE TABLE transaction(transitition_id TEXT , amount DECIMAL (10,2) NOT NULL);

3 CREATE INDEX i0 ON transaction(transitition_id (5));

4 INSERT INTO user VALUES (1), (2);

5 INSERT INTO transaction VALUES('1_c12934 ', 100000) , ('1_e3b664 ', -10);

6

7 SELECT IFNULL(SUM(amount), 0) AS balance FROM user JOIN transaction ON

transaction.transitition_id = user.user_id; -- 99990.00

8 SELECT /*+ JOIN_ORDER(transaction , user)*/ IFNULL(SUM(amount), 0) as balance

FROM user JOIN transaction ON transaction.transitition_id = user.user_id;

-- 0.00

9 ------------------------------------------------------------------------------

10 nested_loop nested_loop

11 +- table +- table

12 | table_name: user | table_name: transaction

13 | access_type: index | access_type: all

14 +- table +- table

15 | table_name: transaction | table_name: user

16 | access_type: all | access_type: eq_ref

tests, which are costly to write. Importantly, such approaches provide so-called test oracles, mecha-

nisms to check whether the computed result by the DBMS is correct. Test oracles are typically either

combined with semi-random database and query generators [3, 49], or existing benchmarks such

as TPC-H [32] or TPC-DS [47]. TQS [45] is an automated testing approach for detecting logic bugs

in query optimizations. Notably, it is the state-of-the-art approach for testing join optimizations.

To tackle the test-oracle problem, it simulates joins to derive a query’s ground-truth results, and

the simulation is performed by table splitting. Specifically, it validates the correctness of join

optimizations by splitting a given table into several sub-tables, and deriving ground-truth results

of a query that joins these sub-tables by retrieving the given table. To generate more diverse test

cases for finding more bugs, TQS randomly injects noise, such as NULL and 0, to these sub-tables

and models database schemas as a graph data model to evaluate the similarity of JOINs. 115 bugs

were found by this approach as claimed in the TQS paper. However, TQS suffers from two major

challenges. First, this method is complex to understand and implement. TQS requires splitting

and maintaining the data schemas with reference to a given table and modeling data schemas

into graphs to decide whether two graphs are isomorphic for evaluating the similarity of queries.

Second, the testing scope is small. TQS can apply only to equijoins. Although, as claimed in the

TQS paper, this method could conceptually be extended to non-equijoins, this method cannot test

other SQL features, which are directly executed to obtain results in TQS.
To understand the bug-finding effectiveness of TQS, we studied the bug reports of TQS in the

public issue trackers. We identified 15 unique bugs, of which 14 were reported by showing that

executing the same query with different query hints produces different results, as illustrated in

Listing 1. Thus, deriving the ground-truth results is not necessary for finding these bugs.

Based on our observation, in this paper, we propose a simple and easy-to-understand approach

to achieve the same level of bug-finding effectiveness as TQS. We propose checking the result

consistency of executing different query plans of the same query, and refer to this method as

Differential Query Plan (DQP) testing. More formally, given a database 𝐷 and a query 𝑄 , the DBMS
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executes 𝑄 on 𝐷 using query plan 𝑃 to obtain the result 𝑄 (𝑃, 𝐷). For another possible query plan

𝑃 ′
for 𝑄 , 𝑄 (𝑃, 𝐷) ≠ 𝑄 (𝑃 ′, 𝐷) indicates a bug.
To realize this technique as a black-box approach that eschews modifications to the DBMSs, we

propose using query hints and setting system variables that are already provided by the DBMSs to

affect the generated query plans. We believe that this technique is obvious and simple, but addresses

both challenges of TQS and has a similar bug-finding effectiveness as TQS. Moreover, DQP can test

more query optimizations rather than only join optimizations, as query hints and system variables

can affect the optimizations of other SQL features. Importantly, the approach is straightforward to

implement, as DQP does not need to maintain data structures, such as graphs and sub-tables, for

deriving the ground-truth results.

Listing 1, which we briefly introduced above, shows a motivating example of a bug found by

DQP in MySQL. Suppose we are in a bank scenario in which MySQL stores the user information in

the table user and transaction records in the table transaction. Lines 1–3 create both tables with an

index, and lines 4–5 insert data into both tables. The data in column transaction_id is composed

of a user ID and a randomly generated transaction ID; for example, 1_c12934 represents the user

1 making a transaction whose ID is c12934. Line 7 checks the balance of user 1 and obtains the

expected result, 9990.00. If the query results in an inefficient query plan, a database administrator

might decide to enforce another query plan by adding a query hint as shown in line 8. The hint /*+

JOIN_ORDER(transaction, user)*/ instructs the DBMS to process table transaction before user when

performing the join. However, this query returns a wrong result 0.00. Both query plans are shown

in lines 10–16. This bug may incur severe consequences, as all money of user 1 is lost.

We implemented DQP in less than 100 lines of Java code for each DBMS based on SQLancer [41],
a widely used DBMS testing framework. SQLancer provides generators for databases and queries

that we reused. We evaluated DQP on three DBMSs used in the TQS paper, MySQL, MariaDB, and

TiDB. The results show that DQP can reproduce 14 out of the 15 unique bugs found by TQS, and
all 10 bugs related to join optimizations. Although these systems were extensively tested by TQS,
DQP found 26 previously unknown unique bugs, and 21 of them are logic bugs. Of these logic bugs,

15 are related to join optimizations, suggesting that these bugs were overlooked by TQS, and 6

are related to other query optimizations, meaning that they cannot be found by TQS. Compared

with TQS, DQP is simple yet general, and efficient. We also compared the bugs found by DQP with

the testing approaches Non-optimizing Reference Engine Construction (NoREC) [40], and Ternary
Logic Partitioning (TLP) [41]. both of which were proposed as general bug-finding techniques for

logic bugs with no focus on finding join optimization bugs. NoREC and TLP cannot find 17 of 21

logic bugs found by DQP , and DQP cannot find 35 of 40 logic bugs found by NoREC and TLP . In
summary, DQP is not only a simple alternative to TQS, but also complementary to NoREC and TLP .

Overall, we make the following contributions:

• We studied the bug-finding effectiveness of a state-of-the-art work TQS for finding logic bugs
in join optimizations;

• We demonstrate that the simple and easy-to-understand testing approach Differential Query
Plans (DQP) testing shows the same level of bug-finding effectiveness as the more complex

approach TQS;
• We implemented and evaluated the approach, which has found 26 unique, previously unknown

bugs in widely-used DBMSs. The source code of DQP is publicly available, and has been

integrated into SQLancer .1

1
https://github.com/sqlancer/sqlancer/issues/918
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2 TQS STUDY
TQS successfully found bugs in MySQL, MariaDB, TiDB, and PolarDB. However, it is a complex

method that requires implementing multiple graphs and tables as internal components for deriving

the ground-truth results. In this section, we study TQS to understand whether these bugs found by

TQS can be found by a simpler method by answering the following questions:

RQ.1 Join-related Bugs. How many bugs reported by TQS are related to join optimizations?

TQS aims to find bugs in join optimizations, so we study how many found bugs are related to

them.

RQ.2 Bug Justifications. How were the bugs reported by TQS? Convincing developers that
their DBMS, and not TQS, is computing an incorrect result might be challenging. As detailed

in our answer to this question, we found that the bugs were explained not based on their

ground-truth results, which motivates our simpler testing approach.

2.1 TQS Summary
Transformed Query Synthesis (TQS) [45] was proposed to detect logic bugs in join optimizations. It

includes two major components: Data-guided Schema and query Generation (DSG) and Knowledge-
guided Query space Exploration (KQE). TQS requires a wide table as an input table. The input table

can be manually given, and in the TQS paper, the authors used the TPC-H
2
and KDD Competition

3

databases. First, DSG splits the wide table into multiple sub-tables through database normalization,

which is an established technique that minimizes data redundancy and dependency by organizing

data into separate tables. Then, DSG randomly constructs a query to join these sub-tables. The

ground-truth results are derived by retrieving the wide table. The derivation process is not easy

to implement as maintaining the relations between the given wide table and the split tables is

necessary and complex. To make the generated queries more diverse, KQE evaluates whether a

randomly generated query is similar to a previous query, and will adjust the random generation

process to reduce the possibility of generating similar queries. The similarity is evaluated by

modeling database schemas as an embedding-based graph, in which each query is a sub-graph, and

KQE checks whether two sub-graphs are isomorphism. The authors claimed that TQS found 115

bugs within 24 hours including 7, 5, 5, and 3 types of bugs in MySQL, MariaDB, TiDB, and PolarDB.

2.2 Study Scope
We chose the public bug list from TQS4 as our studied target. The public bug list is the only source

that we could obtain to study TQS except for its paper. We did not involve the source code of TQS,
because the source code is unavailable and the authors answered in emails that they were currently

not able to provide it to us. We explain our attempts to obtain the source code in Section 6.

2.3 Data Preprocessing
Target DBMSs. We studied the bug reports of MySQL, MariaDB, and TiDB. TQS was originally

evaluated on four DBMSs: MySQL, MariaDB, TiDB, and PolarDB, but we observed that the public

bug list does not include the bug reports of PolarDB. As a result, we studied the bug reports of the

first three DBMSs, in which the authors claimed that TQS found 92 bugs of 17 bug types. While the

paper claims that all found bugs had been reported, the actual number of bug reports in the public

bug list is 21, namely 11 bug reports in MySQL, 5 in MariaDB, and 5 in TiDB.

2
https://www.tpc.org/tpch/

3
https://archive.ics.uci.edu/dataset/129/kdd+cup+1998+data

4
https://github.com/xiutangzju/tqs/blob/d5f8f5/index.md
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Table 1. The bugs reported by TQS.

DBMS Bug Type ID Unique Join Query Plan

MySQL 106713 3 ✓ ✓
MySQL 106715 4 ✓ ✓ ✓
MySQL 106716 7 ✓ ✓ ✓
MySQL 106717 5 ✓ ✓
MySQL 106718 2 ✓ ✓
MySQL 106611 6 ✓
MySQL 106710 1 ✓ ✓
MySQL 99273 ✓
MySQL 109211 ✓ ✓ ✓
MySQL 109212 ✓ ✓ ✓
MariaDB 28214 8 ✓ ✓ ✓
MariaDB 28215 9 ✓ ✓ ✓
MariaDB 28216 10 ✓ ✓ ✓
MariaDB 28217 11 ✓ ✓ ✓
MariaDB 29695 12 ✓ ✓ ✓
TiDB 33039 13 ✓ ✓
TiDB 33041 14 ✓ ✓
TiDB 33042 15 ✓ ✓ ✓
TiDB 33045 16 ✓ ✓
TiDB 33046 17 ✓ ✓

To avoid that we missed any bug reports, as the list of found bugs provided by the TQS authors
could be incomplete, we further searched the submission history of the first author in the corre-

sponding issue trackers. We did not search for other authors as we could not find other authors’

accounts in these issue trackers. Specifically, we searched the issue trackers of MySQL,
5
MariaDB,

6

and TiDB.
7
We failed to identify other bug reports. We show all bug reports in Table 1, in which we

excluded bug #106473, because the developers of MySQL rejected the bug report.
8
We also observed

that bugs #106611, #106710, and #99273 were reported by a non-author, which is mentioned in

the acknowledgment of the TQS paper. Based on our observation and investigation, we infer that

the 92 bugs in the paper refer to bug-inducing test cases, a large portion of which are duplicates,

instead of unique, valid bugs.

Bugs in the TQS paper. To validate our assumption that 92 bugs in the TQS paper refer to bug-
inducing test cases, we did a matching analysis to examine the correlation between the public bug

list and the 17 bug types from Table 4 in the TQS paper. Specifically, for a bug in the public bug list,

we searched for a matching bug type with the same bug status, bug severity, and similar description

described in the TQS paper. We observed that the titles of bug reports are similar to the descriptions

of bug types, but not exactly the same, so we adopted the algorithm gestalt pattern matching [38]

to calculate whether two strings are similar, and the similarity is indicated as a floating number

ranging from 0 to 1 indicating the degree of similarity. We deemed the highest score as the closest

5
https://bugs.mysql.com/search.php?cmd=display&status=All&severity=all&reporter=16399198

6
https://jira.mariadb.org/browse/MDEV-29695?jql=reporter="XiuTang"

7
https://github.com/pingcap/tidb/issues?q=is:issue+author:xiutangzju

8
https://bugs.mysql.com/bug.php?id=106473

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 188. Publication date: June 2024.

https://bugs.mysql.com/bug.php?id=106713
https://bugs.mysql.com/bug.php?id=106715
https://bugs.mysql.com/bug.php?id=106716
https://bugs.mysql.com/bug.php?id=106717
https://bugs.mysql.com/bug.php?id=106718
https://bugs.mysql.com/bug.php?id=106611
https://bugs.mysql.com/bug.php?id=106710
https://bugs.mysql.com/bug.php?id=99273
https://bugs.mysql.com/bug.php?id=109211
https://bugs.mysql.com/bug.php?id=109212
https://jira.mariadb.org/browse/MDEV-28214
https://jira.mariadb.org/browse/MDEV-28215
https://jira.mariadb.org/browse/MDEV-28216
https://jira.mariadb.org/browse/MDEV-28217
https://jira.mariadb.org/browse/MDEV-29695
https://github.com/pingcap/tidb/issues/33039
https://github.com/pingcap/tidb/issues/33041
https://github.com/pingcap/tidb/issues/33042
https://github.com/pingcap/tidb/issues/33045
https://github.com/pingcap/tidb/issues/33046
https://bugs.mysql.com/search.php?cmd=display&status=All&severity=all&reporter=16399198
https://jira.mariadb.org/browse/MDEV-29695?jql=reporter="Xiu Tang"
https://github.com/pingcap/tidb/issues?q=is:issue+author:xiutangzju
https://bugs.mysql.com/bug.php?id=106473


188:6 Jinsheng Ba and Manuel Rigger

match. After matching, we further manually examined and corrected the matching according to the

semantic information of bug reports. Specifically, we matched bug #28217 and bug type 11 as they

have similar descriptions—incorrect results by limiting join buffers but different severity levels,

although they have different bug severity. We also matched bug #33042 and bug type 15 as they

have the same keyword "empty resultset".

In Table 1, the column Type ID shows our matching results. 17 bug reports can be matched to

the 17 bug types in the TQS paper, and 3 bug reports have no matching bug types. This result

shows that each bug report in the public bug list refers to a bug type in the TQS paper, rather than
indicating a bug. Three bug reports have no matched bug types, and a possible explanation is that

they were submitted after submitting the TQS paper.

Unique bugs. Given the 20 bug reports, we investigated the uniqueness of these bugs according

to the developers’ responses. Typically, developers clearly respond to a bug report if it duplicates

a previously reported bug. We carefully reviewed all developers’ responses in the bug reports to

check whether a bug is a duplicate.

In Table 1, the column Unique shows the unique bugs. 15 of the 20 bugs are unique. For MySQL,

bug #106611 is a duplicate of the previously found bug #105773, and the developers confirmed this

duplication within 24 hours after submitting the bug report. For TiDB, bugs #33049, #33041, #33045,

#33046 are duplicates of bug #33042 reported by TQS as well, and these duplicates were confirmed

by developers within 3 days after submitting the bug reports. We further study TQS based on the

15 unique bugs.

RQ.1 Join-related Bugs
We evaluated how many bugs are related to join optimizations. TQS aims to detect logic bugs

in join optimizations, DSG derives ground-truth results of a join, and KQE drives the test case

generation towards exercising diverse join optimizations. Therefore, it is important to determine

how many bugs are related to join optimizations. We examined the test cases in the bug reports and

checked whether a test case includes at least one JOIN clause. If so, we deemed the bug report to be

related to join optimizations. Although join optimizations might also apply to other clauses, such

as subqueries [13], DSG cannot derive the ground-truth results for these clauses,
9
so we considered

only queries with JOIN clauses as join-related queries for this study.

In Table 1, the column Join shows the bug reports whose test case includes at least one JOIN clause.

In total, 10 of 15 unique bugs (67%), are related to join optimizations. For the five bugs that are not

related to join optimizations, #106713, #106717, #106718, #106710, and #99273, a common feature is

that their bug-inducing test cases include at least one SUBQUERY clause. The core components of TQS
show no obvious contribution to the finding of these non-join-related bugs. It is unclear how TQS
constructs the ground-truth results for these cases, because TQS directly executes non-join SQL

clauses to obtain the results.
10

RQ.2 Bug Justifications
We examined the bug descriptions and test cases of these bug reports to study how these bugs

were reported and justified. We observed that all 10 join-related bugs and 14 of 15 unique bugs

were reported in the same manner, by demonstrating that different query plans of the same query

compute inconsistent results. Listing 2 shows an example of bug #106713 in MySQL. The author

argued the buggy behavior by showing that a query with the query hint /*+ no_semijoin()*/ returns

a different result than the same query, but without the query hint. A query hint instructs the DBMS

9
In Section 3.3 of TQS paper, the authors claimed: “DSG randomly generates other expressions based on the join clauses.”

10
In Section 3.4 of TQS paper, the authors claimed: “DSG also executes the generated filters and projections defined in the AST ”.
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Listing 2. MySQL bug #106713 found by TQS.

1 CREATE TABLE IF NOT EXISTS t0(c0 DECIMAL ZEROFILL COLUMN_FORMAT DEFAULT);

2 INSERT HIGH_PRIORITY INTO t0(c0) VALUES(NULL), (2000 -09 -06), (NULL);

3 INSERT INTO t0(c0) VALUES(NULL);

4 INSERT DELAYED INTO t0(c0) VALUES (2016 -02 -18);

5

6 SELECT t0.c0 FROM t0 WHERE t0.c0 IN (SELECT t0.c0 FROM t0 WHERE (t0.c0 NOT IN

(SELECT t0.c0 FROM t0 WHERE t0.c0 )) = (t0.c0) ); --

{0000001985} ,{0000001996}

7 SELECT t0.c0 FROM t0 WHERE t0.c0 IN (SELECT /*+ no_semijoin ()*/ t0.c0 FROM t0

WHERE (t0.c0 NOT IN (SELECT t0.c0 FROM t0 WHERE t0.c0 )) = (t0.c0) ); --

empty set

Listing 3. MySQL bug #99273 found by TQS.

1 CREATE TABLE t1 (a INT , b INT);

2 INSERT INTO t1 VALUES (1,1) ,(2,1) ,(3,2) ,(4,2) ,(5,3) ,(6,3);

3

4 SET SQL_MODE = 'ONLY_FULL_GROUP_BY ';

5 SELECT a FROM t1 as t1 GROUP BY a HAVING (SELECT t1.a FROM t1 AS t2 GROUP BY b

LIMIT 1); -- {1} ,{2} ,{3} ,{4} ,{5} ,{6}

6 INSERT INTO t1 values (null , 4);

7 SELECT a FROM t1 as t1 GROUP BY a HAVING (SELECT t1.a FROM t1 AS t2 GROUP BY b

LIMIT 1); -- empty set

to generate or avoid a specific query plan, and no_semijoin() disables the semijoin during query

optimization. The only exception is bug #99273, as shown in Listing 3. This bug is included in the

public bug list, but can not be matched to any bug type in the TQS paper. This bug was explained
by the unexpected behavior that a query returns fewer rows after inserting a row with NULL. The

root reason is an incorrect optimization for SUBQUERY, but is not related to JOIN. It is unclear how

TQS derives the ground-truth result for a SUBQUERY, as TQS can only derive the results of JOIN. We

also noticed that this bug was found in 2020, while all other bugs were found in 2022. Based on

our observations, we assume that most of these bugs can be found by checking inconsistencies in

executing the same query with different query plans, which is much simpler than TQS.

14 of the 15 unique TQS bugs and all 10 JOIN-related bugs were reported by showing discrepancies

across the executions of different query plans of the same query.

3 APPROACH
We propose a simple approach, which we term Differential Query Plans (DQP) testing, to find bugs

in join optimizations. Our core idea is to find bugs by comparing the results of the same query

while enforcing different query plans for it. Compared to TQS, DQP does not require implementing

graph and table structures for deriving ground-truth results. Moreover, DQP supports finding bugs

in a variety of query optimizations instead of only in equijoin optimizations. Our key contribution

is not the novelty of the approach, but the insight that a simple and easy-to-understand technique

performs at the same level as a more sophisticated approach.
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 SELECT 
IFNULL(SUM(amount), 0) AS balance 
FROM user JOIN transaction
ON transaction.transaction_id = 
user.user_id;

 SELECT 
/*+ JOIN_ORDER(transaction, user)*/ 
IFNULL(SUM(amount), 0) as balance 
FROM user JOIN transaction
ON transaction.transaction_id = 
user.user_id;

Database
balance

0.00

balance

0.00

=

≠

=

≠

user

user_id

1

2

user_id

1

2

user

user_id

1

2

transaction

amount

100000

-10

transaction_id

1_c12934

1_e3b664

transaction

amount

100000

-10

transaction_id

1_c12934

1_e3b664

i0

nested_loop
+- table
|  table_name: transaction
|  access_type: all
+- table
|  table_name: user
|  access_type: eq_ref

Query Plan

nested_loop
+- table
|  table_name: transaction
|  access_type: all
+- table
|  table_name: user
|  access_type: eq_ref

Query Plan

nested_loop              
+- table                 
|  table_name: user      
|  access_type: index    
+- table                 
|  table_name: transaction
|  access_type: all      

Query Plan

nested_loop              
+- table                 
|  table_name: user      
|  access_type: index    
+- table                 
|  table_name: transaction
|  access_type: all      

Query Plan

balance

99990.00

balance

99990.00

1 Database State Generation1 Database State Generation

2 Query Generation2 Query Generation

4 Result Validation4 Result Validation

3 Query Plan Enforcement3 Query Plan Enforcement

Fig. 1. Overview of DQP .

Approach overview. Figure 1 shows an overview of DQP illustrated based on Listing 1. First, DQP
generates a database state 𝐷 in step 1○. Then, in step 2○, DQP generates a query 𝑄 , and enforces

different query plans 𝑃 and 𝑃 ′
to execute it. In step 3○, DQP obtains the results of the executions. A

discrepancy in the results, that is, 𝑄 (𝑃, 𝐷) ≠ 𝑄 (𝑃 ′, 𝐷), indicates a potential bug.

Database State Generation ( 1○). For a fully automated approach, we assume 𝐷 to be randomly

generated. Common generation methods include mutation-based methods [25, 51] and rule-based

methods [40–42, 49]. To create 𝐷 in Figure 1, DQP executes lines 1–5 in Listing 1. Generating a

database state is not a contribution of this paper, and DQP can be paired with any database state

generation method. In fact, 𝐷 could also be manually specified.

Query Generation ( 2○). Based on 𝐷 , DQP randomly generates a query 𝑄 in step 2○ whose results

we subsequently automatically validate to find bugs. Similar to database state generation, many

query generation approaches have been proposed [5, 8, 23, 29, 36, 43, 44], and DQP can, in principle,

be paired with any of these query generation methods.

Query Plan Enforcement ( 3○). DQP executes 𝑄 , for which the DBMS derives a query plan 𝑃 .

Then, DQP attempts to force the DBMS to derive an alternative query plan 𝑃 ′
for the same query.

Query hints and system variables are two ways that affect query plans by using SQL keywords

without the need to modify the source code of DBMSs. In Section 4 we describe more details about

both ways. In Figure 1, DQP enforces a 𝑃 ′
that has a different join order than 𝑃 by the query hint

/*+ JOIN_ORDER(transaction, user)*/.

Result Validation ( 4○). In step 3○, DQP executes 𝑄 (𝑃, 𝐷) and 𝑄 (𝑃 ′, 𝐷) to obtain results, and we

check their consistency. Here, 𝑄 (𝑃, 𝐷) = 99990.00, while 𝑄 (𝑃 ′, 𝐷) = 0.00, so a bug is found.

4 IMPLEMENTATION
We implemented DQP in SQLancer ,11 a DBMS testing framework that randomly generates database

states and queries complying with the SQL grammar, and subsequently refer to our prototype as

SQLancer+DQP . We discuss the technical details for implementing SQLancer+DQP in this section.

4.1 Database andQuery Generation for 1○, 2○
We adopted the grammar-based method provided by SQLancer to randomly generate syntactically

correct SQL statements. SQLancer encodes the grammar of the DBMSs’ SQL dialects, and DQP

11
https://github.com/sqlancer/sqlancer
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randomly walks the corresponding grammar tree to generate an SQL statement. To generate 𝐷 ,

DQP generates non-query statements, such as CREATE TABLE and CREATE INDEX. Similarly, to generate

𝑄 , DQP randomly walks the tree to generate query statements, that is SELECT. Grammar-based

generation methods are also used in TQS and SQLSmith [49].

Generating JOINs. While SQLancer already generates JOINs for many DBMSs, it lacks the support

of JOINs for MySQL and MariaDB. We updated SQLancer to support generating the JOIN clause for

MySQL and MariaDB with reference to the code of JOIN in TiDB’s implementation
12
in SQLancer .

4.2 Query Plan Enforcement for 3○
Query hints and system variables are two ways that affect query plans by using SQL without

requiring modifications to the source code of the DBMS under test.

Query hints. A query hint is a comment-like clause in a query and can affect the behaviors of the

query optimizer. Query hints are widely supported by popular DBMSs, such asMySQL,
13
MariaDB,

14

and TiDB.
15
For the query hints that require table or column names as parameters, we randomly

generate such names according to the query. In Figure 1, the query hint /*+ JOIN_ORDER(transaction,

user)*/ enforces the query optimizer to join both tables in a specific order, which is the difference

between 𝑃 ′
and 𝑃 .

System variables. Another way to affect query plans is by setting system variables that af-

fect the query optimizer. The variable optimizer_switch for MySQL
16
and MariaDB

17
is a system

variable that affects query optimization and thus the generated query plans. Concretely, DQP
executes a SET statement with the query to configure the system variable to enforce a different

query plan. For example, in MariaDB, DQP may execute this SET statement and the query: SET

STATEMENT optimizer_switch='index_merge=on'FOR SELECT t0.c0 FROM t0. The prefix SET configures the

system variable taking effect for the following SELECT statement, and index_merge controls whether

to enable the index merge optimization.

Efficiency consideration. For testing efficiency, we enforce multiple query plans {𝑃 ′, 𝑃 ′′, ...} by
enumerating all possible query hints and values of the system variable in an iteration. Doing so

is feasible as we observed that both query hints and potential values associated with the system

variable are finite and small in number. We examined DBMS documents and extracted 32 query

hints and 26 options for the system variable optimizer_switch in MySQL, 37 options for the system

variable optimizer_switch in MariaDB, and 22 query hints in TiDB for enforcing different query

plans. In Figure 1, for simplicity, we only show the executions of 𝑃 and 𝑃 ′
.

4.3 Result Validation for 4○
We initially observed false alarms during step 4○. As clarified by the DBMS developers, these false

alarms were due to ambiguous queries, which refer to queries whose results are not guaranteed to be

consistent or predictable. To exclude these false alarms, we identify ambiguous queries by checking

whether a different row order in tables affects the result. After implementing this technique, we

observed no false alarms. After an iteration, DQP continues with step 1○ or 2○ to start a new

iteration. Since generating 𝐷 is relatively slow, DQP returns to step 2○ by default. Only after a fixed

12
https://github.com/sqlancer/sqlancer/blob/cddff6/src/sqlancer/tidb/ast/TiDBJoin.java

13
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html

14
https://mariadb.com/kb/en/optimizer-hints/

15
https://docs.pingcap.com/tidb/stable/optimizer-hints

16
https://dev.mysql.com/doc/refman/8.0/en/switchable-optimizations.html

17
https://mariadb.com/kb/en/optimizer-switch/
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number of iterations, does DQP return to step 1○. The number is configurable, and we configured

the number to be 10,000, which was empirically determined to work well in prior work [3].

Ambiguous queries. Ambiguous queries may incur false alarms, as also observed in other DBMS

testing approaches [40, 41]. Investigating and analyzing all categories of ambiguous queries is chal-

lenging and exceeds the scope of this paper. We discuss the ambiguous queries that we encountered

in practice. One kind of ambiguous query
18
is including non-aggregated columns in a SELECT clause.

A column that is not included in GROUP BY is a non-aggregated column. If we include non-aggregated

columns in SELECT, some DBMSs return the non-aggregated column of a random row from each

group. The other DBMSs, such as PostgreSQL, reject such ambiguous queries. Listing 4 shows a

concrete example that we encountered when testing TiDB. For the test case in the top half, both

queries retrieve the column t0.c0, which is not included in GROUP BY. The function CAST converts

both 0.9 and 0.8 to 1, so both rows in t0 will be in the same group, but both queries return different

results as they return a random row of the group. These ambiguous queries cause false alarms in

the validation step 4○.

Algorithm 1 Ambiguous query identification

Input: query: 𝑄 , two query plans of 𝑄 : 𝑃 𝑃 ′
, database: 𝐷

1: 𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 = 𝑓 𝑎𝑙𝑠𝑒

2: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑄, 𝐷, 𝑃, 𝑃 ′
)

3: for 𝐷 ′
in 𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝐷) do

4: if 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝑃, 𝑃 ′, 𝑄, 𝐷 ′) ≠ 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝑃, 𝑃 ′, 𝑄, 𝐷) then
5: 𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 = 𝑡𝑟𝑢𝑒

6: 𝑏𝑟𝑒𝑎𝑘

7: end if
8: end for

Output: 𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠

Ambiguous query identification algorithm. Algorithm 1 shows our algorithm to identify ambigu-

ous queries by checking whether a different row order in tables affects the validation result. First,

to reduce the computational complexity, we minimize 𝑄 and 𝐷 . A bug-inducing test case identified

by step 3○ typically includes hundreds of SQL statements to initialize database states and query

results. To efficiently execute them multiple times for identifying ambiguous queries, we minimize

each test case both using C-Reduce [39] and manually. Figure 1 includes the minimized test case

that includes only two tables and four rows. Then, we permutate the rows in all tables. For each

permutation 𝐷 ′
, if it affects the validation result,𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝑃, 𝑃 ′, 𝑄, 𝐷 ′) ≠ 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝑃, 𝑃 ′, 𝑄, 𝐷), the

query is ambiguous. In Listing 4, permutating the rows in t0 incurs a different result for the second

query, and the discrepancy disappears. DQP identifies and ignores this test case as the discrepancy

likely indicates an ambiguous query.

Algorithm scalability. We believe that in practice, Algorithm 1 is feasible, as databases used to

reproduce most bugs in existing works are small after minimization; for example, the average

number of SQL statements in minimized bug-inducing test cases is 3.69 across 499 historical bugs

found by SQLancer .19 That most test cases can be reproduced with only small bug-inducing test

cases has been observed in various testing works, such as for file systems [31], Java programs [2],

18
https://docs.pingcap.com/tidb/v6.5/dev-guide-unstable-result-set

19
https://github.com/sqlancer/bugs/blob/96cbb8/bugs.json
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Listing 4. An unstable behavior identified by recondition.

1 CREATE TABLE t0(c0 FLOAT);

2 INSERT INTO t0 VALUES (0.9), (0.8);

3 CREATE INDEX i0 ON t0(c0);

4 SET @@sql_mode='';

5

6 SELECT t0.c0 FROM t0 GROUP BY CAST(t0.c0 AS DECIMAL); -- {0.8}

7 SELECT /*+ IGNORE_INDEX(t0, i0)*/t0.c0 FROM t0 GROUP BY CAST(t0.c0 AS

DECIMAL); -- {0.9}

8

9 ------------------------------------------------------------------------------

10 CREATE TABLE t0(c0 FLOAT);

11 INSERT INTO t0 VALUES (0.8), (0.9);

12 CREATE INDEX i0 ON t0(c0);

13 SET @@sql_mode='';

14

15 SELECT t0.c0 FROM t0 GROUP BY CAST(t0.c0 AS DECIMAL); -- {0.8}

16 SELECT /*+ IGNORE_INDEX(t0, i0)*/t0.c0 FROM t0 GROUP BY CAST(t0.c0 AS

DECIMAL); -- {0.8}

and answer-set programs [34], and is known as the so-called small-scope hypothesis. For Figure 1,
each table includes two rows, so the number of permutations is 2! ∗ 2! = 4. Except for the original

permutation, the loop at line 3 executes at most 3 times. Through the test case minimization, the

execution number of the loop reduces exponentially.

5 EVALUATION
To evaluate the effectiveness and efficiency of DQP , we sought to answer the following questions:

Q.1 Bug Reproduction. Can DQP find the bugs found by TQS?
Q.2 New Bugs. Can DQP find previously unknown bugs?

Q.3 Bug-finding Efficiency. How efficiently can DQP find bugs?

Q.4 Bug-finding Effectiveness. How effective is DQP compared to other test oracles for

finding logic bugs?

Q.5 Coverage. To what extent does DQP cover query optimizers?

Tested DBMSs. We tested the same DBMSs, MySQL, MariaDB, and TiDB as we studied in Section 2.

MySQL is one of the most popular relational DBMSs. MariaDB is another popular DBMS that was

forked from MySQL. TiDB is a popular enterprise-class DBMS, and its open version on GitHub has

been starred more than 35k times. Importantly, these DBMSs were also tested by TQS. Because the
bug reports of PolarDB were not published by the TQS authors, we did not test PolarDB. For Q2 and
Q4, we used the latest available development versions (MySQL: 8.1.0, MariaDB: 11.1.2, TiDB: 7.4.0).

For a fair comparison in Q3, we used the same versions as TQS used (MySQL: 8.0.28, MariaDB:

10.8.2, TiDB: 5.4.0). All DBMSs were running in default configurations.

Experimental infrastructure. We conducted all experiments on an AMD EPYC 7763 processor that

has 64 physical and 128 logical cores clocked at 2.45GHz. Our test machine uses Ubuntu 22.04.2

with 512 GB of RAM, and a maximum utilization of 60 cores.
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Q.1 Bug Reproduction
We evaluated whether DQP , as a simple testing approach, can find the logic bugs found by TQS. As
found in Section 2, 14 of 15 unique bugs and all 10 join-related bugs were reported in the same

manner, which is similar to the approach of DQP , so we assumed that DQP could find these bugs as

well. We used the test cases in the public bug reports from TQS (see Table 1) as the initial database
state and the original query, and, following DQP , enforced a different query plan for the query as

shown in step 3○ in Figure 1. If we observe any discrepancy between the results returned by the

original and derived queries, we deem that the bug can be found by DQP .

Results. DQP can identify 14 of 15 unique bugs that were reported by TQS. In Listing 2, which

shows a previous-discussed bug-inducing test case found by TQS, the bug-inducing test case

includes two queries, the only difference of which is the query hint, and the description of the

bug reason is “no_semijoin produce wrong results”. Therefore, DQP can derive the second query by

adding the query hint no_semijoin, and easily find this bug.

We also found that all 10 join-related bugs can be found by DQP , as they were all reported in

a manner like Listing 2. Although TQS finds a bug by comparing the execution result against a

ground-truth result, the TQS authors explained the bugs to developers by providing a reference

query whose result differed from the buggy query. The result demonstrates that DQP can find the

majority of bugs that were found by TQS.

14 of 15 unique bugs, and all 10 join-related bugs found by TQS can be detected by DQP .

Q.2 New Bugs
Apart from reproducing existing bugs found by TQS, we evaluated whether SQLancer+DQP can

find previously unknown bugs. We would expect so due to the broader testing scope. DQP can be

applied also to non-equijoin and queries without JOINs, given that these queries’ query plans can be

influenced by query hints or system variables. We ran SQLancer+DQP twice for 24 hours on three

DBMSs aiming to find bugs. To reduce the possibility of finding duplicate bugs, between two runs,

we disabled the query hints and system variables that contributed to the bugs found in the first run.

Developers typically confirmed our bug reports within several days; however, these bugs usually

required several weeks or months to be fixed for the next release version. Developers typically

explicitly responded when a duplicate issue was reported. To avoid reporting duplicate bugs, we

reported only the bugs that were likely unique, rather than all bug-inducing test cases. Specifically,

for each query hint and available option of the system variables, we reported at most one bug.

Bug overview. Table 2 shows the unique, previously unknown 26 bugs found by SQLancer+DQP .
The column Logic represents whether the bug is a logic bug, and the column Join represents whether
the bug is related to join optimizations. We submitted 32 bug reports to the developers, of which

26 bugs were confirmed as unique and previously unknown bugs, 1 bugs were duplicates, 1 was

waiting for further analysis, and 4 bugs were false alarms due to ambiguous queries. These false

alarms inspired us to design Algorithm 1, and we observed no false alarms after implementing the

algorithm. Note that #47019 and #47020 in TiDB are potential duplicates as they cannot be observed

after fixing bug #46601. We are awaiting the developers’ response to confirm whether they are

duplicates.
20
Therefore, we deemed them unique as developers did not claim they were duplicates.

Logic bugs. Out of the unique and previously unknown 26 bugs, 21 were logic bugs in query

optimizations, as they were found due to inconsistent results returned by different query plans of

20
https://github.com/pingcap/tidb/issues/47019#issuecomment-1734913792
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Table 2. Previously unknown and unique bugs found by DQP .

DBMS Bug Status Severity Logic Join

MySQL 112243 Confirmed Non-critical ✓ ✓
MySQL 112242 Confirmed Serious ✓
MySQL 112264 Confirmed Serious ✓ ✓
MySQL 112269 Confirmed Serious ✓ ✓
MySQL 112296 Confirmed Non-critical ✓ ✓
MariaDB 32076 Confirmed Major ✓
MariaDB 32105 Confirmed Major ✓ ✓
MariaDB 32106 Confirmed Major ✓ ✓
MariaDB 32107 Confirmed Major ✓ ✓
MariaDB 32108 Confirmed Major ✓ ✓
MariaDB 32143 Confirmed Major ✓ ✓
MariaDB 32186 Confirmed Major ✓ ✓
TiDB 46535 Confirmed Major ✓ ✓
TiDB 46538 Confirmed Moderate

TiDB 46556 Confirmed Major

TiDB 46580 Fixed Critical ✓ ✓
TiDB 46598 Confirmed Major ✓
TiDB 46599 Confirmed Major ✓
TiDB 46601 Fixed Critical ✓
TiDB 47019 Confirmed Major ✓
TiDB 47020 Confirmed Major ✓ ✓
TiDB 47286 Confirmed Major ✓ ✓
TiDB 47345 Confirmed Critical ✓ ✓
TiDB 47346 Confirmed Major

TiDB 47347 Confirmed Major

TiDB 47348 Confirmed Moderate

Sum: 26 21 15

the same query. The non-logic bugs were due to internal errors and crashes that can be exposed

without comparing the results of executing different query plans.

Join-related bugs. 15 of 21 logic bugs relate to join optimizations as their minimized test case

requires at least one JOIN. While DQP can find bugs across various query optimizations, the majority

of the found bugs relate to join optimizations, which is the test target of TQS. To identify bugs

related to join optimizations, we followed the same classification method as in Section 2, which

considers join optimization bugs as logic bugs that include at least one JOIN clause. The results

show that join optimizations are more buggy than other query optimizations, and TQS overlooked
our found bugs in join optimizations. Our simple approach, DQP , shows a surprising effectiveness

in finding these join-optimization bugs.

Bug severity. One important question is whether the bugs found byDQP are considered important

by the developers. For TiDB, whose bug severity is specified by developers, 12 of 14 found bugs

have the bug severity of Major or Critical, which represents that the bugs seriously affected the

target system and typically have high priorities to be fixed. The one bug found by TQS also has the
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Listing 5. Bug #112242 found by DQP by setting system variables in MySQL.

1 CREATE TABLE t0(c0 INT);

2 INSERT INTO t0(c0) VALUES (1);

3 CREATE INDEX i0 USING HASH ON t0(c0) INVISIBLE;

4

5 SELECT t0.c0 FROM t0 WHERE COALESCE (0.6) IN (t0.c0); -- {}

6 SET SESSION optimizer_switch = 'use_invisible_indexes=on';

7 SELECT t0.c0 FROM t0 WHERE COALESCE (0.6) IN (t0.c0); -- {1}

Listing 6. Bug #46580 found by DQP by setting query hints in TiDB.

1 CREATE TABLE t0(c0 INT);

2 CREATE TABLE t1(c0 BOOL , c1 BOOL);

3 INSERT INTO t1 VALUES (false , true);

4 INSERT INTO t1 VALUES (true , true);

5 CREATE VIEW v0(c0, c1, c2) AS SELECT t1.c0, LOG10(t0.c0), t1.c0 FROM t0, t1;

6 INSERT INTO t0(c0) VALUES (3);

7

8 SELECT COUNT(v0.c2) FROM v0, t0 CROSS JOIN t1 ORDER BY -v0.c1; -- empty set

9 SELECT /*+ MERGE_JOIN(t1, t0, v0)*/COUNT(v0.c2) FROM v0, t0 CROSS JOIN t1

ORDER BY -v0.c1; -- {4}

bug severity of Critical. For MySQL and MariaDB, we found that the bug severities are specified

by users and typically not updated by the developers. Thus, we believe that they are inaccurate.

However, since they were reported in the TQS paper, we also provide them for comparison. 10 of

the 12 found bugs in MySQL and MariaDB have bug severity of Serious andMajor, while all 12 bugs
in the TQS paper have the bug severity of Serious, Major, or Critical. To further demonstrate the

importance of our found bugs, we present two selected examples.

Example 1: a bug found by setting system variables. Listing 5 shows bug #112242 we found in

MySQL by controlling the system variable optimizer_switch. The configuration use_invisible_indexes

controls whether the query optimizer considers invisible indexes, which are excluded from query

optimizations by default. In this example, the index i0 is set to INVISIBLE, so the first query retrieves

the data without using the index. When setting the variable to use_invisible_indexes=on, the second

query uses index i0 to retrieve the data. This bug is due to an incorrect index optimization. Without

DQP , it is difficult to know if a query using that index returns an incorrect result. We specified

the severity Serious when submitting the bug report. Of the 21 logic bugs DQP found in query

optimizations, 10 bugs are found by setting system variables.

Example 2: a bug found by setting query hints. Listing 6 shows bug #46580 we found in TiDB by

setting the query hint MERGE_JOIN. The query hint MERGE_JOIN instructs the query optimizer to use

the sort-merge join algorithm when executing the JOIN operator. Based on the developers’ reply,

the issue was in the Projection operation, which corresponds to a projection operation in relational

algebra. When using MERGE_JOIN, the Projection operation incorrectly returns an empty output, so

the first query returns an unexpectedly empty result. DQP found this bug by comparing the results

of the same query with and without the query hint MERGE_JOIN. Projection is prevalent as it is usually

executed for a SELECT, so the developers assigned the severity Critical to this bug and fixed it within

one week. Of the 21 logic bugs DQP found in query optimizations, 11 bugs are found by setting

query hints.
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Fig. 2. Number of bug-inducing test cases found by DQP in 24 hours and 10 runs.

DQP enabled us to find and report 26 unique, previously unknown bugs missed by TQS.

Q.3 Bug-finding Efficiency
We evaluated howmany bugs DQP can find in 24 hours. We ran DQP with the default configurations

of SQLancer for 24 hours, and measured the number of bug-inducing test cases. We excluded bugs

that cause crashes or internal errors, because they are not directly found by DQP , but by an implicit

test oracle. Although TQS was evaluated in a similar experiment in Section 5.2 of the TQS paper, it
is challenging to make a fair comparison, due to the aforementioned unavailability of its source

code, and because some experimental configurations are unclear. First, both TQS and DQP adopt

a grammar-based test case generation method, but the implementation differences are unclear,

such as the possible expressions for WHERE. While other DBMS testing works [3, 51] also omit

detailed descriptions, they provide the source code, from which this information can be extracted.

Second, TQS supports multiple threads, but we have not found the number of threads used for

their efficiency evaluation in Figure 8 of Section 5.2 in the TQS paper. For SQLancer+DQP , we ran
10 threads, which is a common practice for evaluating testing tools [24] and is also used by other

DBMS testing work [3]. Third, it is unclear whether the TQS authors counted only logic bugs or all

kinds of bugs. Last, TQS and DQP were evaluated on different machines, which have a significant

impact on efficiency, so their efficiency results are not directly comparable.

Results. Figure 2 shows the number of bug-inducing test cases found by DQP in MySQL, MariaDB,

and TiDB for 24 hours. In total, DQP found 24, 120, and 72 bug-inducing test cases in three DBMSs

respectively. Due to several crash bugs found by SQLancer+DQP , MySQL and TiDB exited at around

9 hours. Compared with the results in Section 5.2 of the TQS paper, DQP demonstrates significant

progress in bug detection efficiency compared to TQS. Recall that it is challenging to conduct a

fair comparison with TQS. Nevertheless, the substantial number of bug-inducing test cases found

by SQLancer+DQP demonstrates its efficiency even without sophisticated techniques to improve

test-case generation.

SQLancer+DQP found 216 bug-inducing test cases in 24 hours in MySQL, MariaDB, and TiDB.
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Fig. 3. The number of bugs detected by oracles.

Listing 7. Equivalent test cases of Listing 5 for NoREC and TLP .

1 CREATE TABLE t0(c0 INT);

2 INSERT INTO t0(c0) VALUES (1);

3 CREATE INDEX i0 USING HASH ON t0(c0) INVISIBLE;

4 -------------------------------------NoREC -------------------------------------

5 SELECT COUNT (*) FROM t0 WHERE COALESCE (0.6) IN (t0.c0); -- {0}

6 SELECT SUM(count) FROM (SELECT (COALESCE (0.6) IN (t0.c0)) IS TRUE AS count

FROM t0) as t; -- {0}

7 --------------------------------------TLP --------------------------------------

8 SELECT t0.c0 FROM t0; -- {1}

9 SELECT t0.c0 FROM t0 WHERE COALESCE (0.6) IN (t0.c0) UNION SELECT t0.c0 FROM t0

WHERE NOT (COALESCE (0.6) IN (t0.c0)) UNION SELECT t0.c0 FROM t0 WHERE

(COALESCE (0.6) IN (t0.c0)) IS NULL; -- {1}

Q.4 Bug-finding Effectiveness
We compared DQP with two state-of-the-art oracles for finding logic bugs: Non-optimizing

Reference Engine Construction (NoREC) [40], and Ternary Logic Partitioning (TLP) [41]. NoREC
checks for inconsistent results of a predicate used in a query that the DBMS might optimize and

one that is used in a query that is difficult to optimize. TLP expects a query and derives multiple

more complex queries, each of which computes a partition of the result to check whether the

combined partitions and the original query’s results are equivalent. Both oracles are implemented

in SQLancer . We did not consider other test oracles for finding logic bugs, such as Pivoted Query

Synthesis (PQS) [42], which is not supported for the three evaluated DBMSs in SQLancer .

Methodology. We used the same methodology as prior works [21, 40, 41] to conduct a manual

and best-effort analysis to identify the overlap and unique bugs found by DQP , NoREC, and TLP . It
is difficult to distinguish whether two bug-inducing test cases found by different methods trigger

the same underlying bug [27]. We considered only the minimized test cases that were reported to

developers assuming that each test case represented a unique bug. While we cannot completely

rule out misclassifications that might be due to overlooking that a bug could be found by another

query, we believe that the majority of cases were clear. In total, we collected all 41 logic bugs, of

which 40 are reproducible, found by NoREC and TLP for MySQL, MariaDB, and TiDB from the

public bug list,
21
and 21 logic bugs found by DQP in Table 2. Then, we used a bug-inducing test

case for DQP to derive another test case by applying NoREC and TLP to the same database and the

corresponding query, and vice versa.

Results. Figure 3 shows the number of bugs found by DQP , NoREC, and TLP . 17 of 21 logic bugs
found DQP cannot be found by NoREC or TLP . Out of the 17 bugs, 10 bugs are because both the

21
https://github.com/sqlancer/bugs/blob/96cbb856/bugs.json
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Fig. 4. Average number of unique query plans covered by DQP in 24 hours and 10 runs.

original query and the derived query result in correct or incorrect query plans. The other 7 bugs

cannot be rewritten to equivalent test cases for NoREC or TLP due to the lack of necessary clauses

for both oracles, such as WHERE. We also found that DQP cannot reproduce all 4 bugs found by NoREC,
and 31 of 36 bugs found by TLP . The result shows that the bugs found by DQP rarely overlap with

the bugs found by NoREC and TLP , suggesting that DQP is complementary to NoREC and TLP .

Example. Listing 7 shows an example of rewriting the bug-inducing test case of Listing 5 to

equivalent test cases for NoREC and TLP—note that this is a mechanical transformation. For NoREC,
the first query is the same as the original query in line 5 of Listing 5, and the second query is

derived from the first query by moving the predicate in WHERE. For TLP , the first query is generated

by omitting the WHERE in the original query, and the second query is a union of three queries with

different predicates in WHERE. Both oracles find a bug if both queries return inconsistent results.

Without setting the option use_invisible_indexes=on, the buggy index i0 is not considered, so all

queries checked by NoREC and TLP fail to use the buggy index required to expose the bug.

NoREC and TLP cannot find 17 of 21 logic bugs found by DQP .

Q.5 Coverage
We evaluated how well DQP exercises query optimizers, which is the key component that we aimed

to test. We considered various metrics to capture the notion of coverage. First, since DQP enforces

different query plans of the same queries, we examined how comprehensively query plans are

covered by plan coverage, which refers to the ratio of exercised unique query plans to the estimated

number of all observable unique query plans. Then, we used query hints and system variables

to enforce query plans, so we evaluated to what extent they affect query optimizers by hint and
variable coverage and join coverage. Last, we also evaluated code coverage, a common metric to

evaluate how much code is tested.

Plan coverage. We measured the ratio of unique query plans DQP covers for all observable

unique query plans. A query plan represents an optimized query, and a higher number of unique

query plans implies that more query optimization strategies are applied. A challenge with respect

to measuring the number of unique query plans is that query plans include unstable auxiliary

information, which usually differs for almost every query plan.We consider a query plan structurally
unique, if the query plan is still unique after removing such information. To exclude this information,
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Table 3. The number of query hints or system variables that affect the three categories of query optimizations.

DBMS Join Index Table

MySQL 14 26 18

MariaDB 18 5 14

TiDB 10 4 8

Sum: 42 35 40

we omitted schema names (e.g., column and table names), estimated cost (e.g., cardinalities), and
random identifiers (e.g., line identifiers) in query plans. This method follows the practice reported

in a prior work [3]. Another challenge is the unknown upper bound of the number of query plans,

as it is unclear how many possible combinations of operations for a query plan exist; note that

the number is infinite in principle because an additional JOIN clause will typically result in a more

complex query plan. As a best effort, we estimated the upper bound by combining all unique query

plans covered by DQP , NoREC, and TLP across 24 hours and 10 runs, assuming the number of

combined unique query plans as the upper bound. Suppose 𝐷𝑖 , 𝑁𝑖 ,𝑇𝑖 represent the set of unique

query plans covered by three oracles respectively for a DBMS in run 𝑖 , then the estimated number

of the upper bound is |⋃10

𝑖=1 (𝐷𝑖 ∪ 𝑁𝑖 ∪𝑇𝑖 ) |.

Results. Figure 4 shows the average number of unique query plans covered by SQLancer+DQP
across 10 runs in 24 hours. In summary, for MySQL, MariaDB, and TiDB, the estimated upper

bounds of plan coverage are 27156, 7553, and 253947, and SQLancer+DQP covers 15.42% (4187.5),

18.17% (1372.4), and 13.34% (33876.6) on average for each run. Due to several crash bugs found by

SQLancer+DQP in TiDB, all 10 runs exited in around 12 hours. Although in a shorter time period,

the most unique query plans were covered in TiDB. A possible reason is that TiDB includes richer

elements in query plans than others. TiDB is a distributed DBMS, and, for example, indicates the

execution node of each operator in query plans, while other DBMSs do not have similar information.

Although achieving less than an average of 20% plan coverage for the three DBMSs, DQP achieves a

much higher plan coverage than NoREC and TLP , both of which achieved less than 1% average plan

coverage across 10 runs. This is expected, because NoREC and TLP do not optimize for this metric.

We note that the overall low coverage can be explained by diverse query plans being explored

across runs—less than 50% overlapped for SQLancer+DQP across 10 runs, and thus the sum of the

average coverage numbers for each run of DQP , NoREC, and TLP is not close to 100%. The reason

may be randomly generated databases and queries, which typically differ across runs. We cannot

compare the plan coverage by DQP and TQS, because TQS’s source code is unavailable, and no

query plan coverage numbers were reported in its paper. For all three DBMSs, SQLancer+DQP
covers thousands of unique query plans, which shows that SQLancer+DQP is effective in testing

query optimization.

Hint and variable coverage. We identified three categories of query optimizations that can be

affected by query hints or system variables. Table 3 shows the number of query hints or systems

variables of each category. Although query plans and query optimizations are DBMS-specific

and not directly comparable, we found that the three DBMSs provide hints or variables to affect

common categories of optimizations: Join, the algorithms and orders of joining two tables; Index,
the algorithms and applicable range for indexes; and Table, the strategies to write and read tables,

such as table caching for repeated queries and full table scan for small tables. As a concrete example,

to affect join optimizations, query hint HASH_JOIN can be used in MySQL and TiDB to enforce the use
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of the hash join algorithm, and variable hash_join_cardinality can be used in MariaDB to indicate

whether historical cardinality statistics should be used for hash joins. Although MariaDB is derived

from MySQL, both have a different number of query hints and system variables. For example, for

the category Index, MySQL has two query hints and four system variables tailored for affecting the

algorithm of index merge, which is an optimization for using indexes to merge results from multiple

scans, while MariaDB does not have a similar hint or variable to affect it. TiDB has additional

optimizations of the category Table for switching storage engines, which can be affected by query

hints. For example, the query hint READ_FROM_TIFLASH is used to enforce reading tables from TiFlash,

a storage engine of TiDB. This optimization is specific to TiDB, while MySQL and MariaDB can

only specify storage engines when creating tables. All three DBMSs provide support for query

hints and system variables, influencing the same three categories of query optimizations. However,

they impact specific query optimizations to each DBMS.

Join coverage. Since DQP aims to find bugs in join optimization, we also evaluated how many join

operators SQLancer+DQP covered in query plans by setting query hints and system variables across

10 runs in 24 hours. We examined whether our query plans cover the join operators illustrated in

the documents of MySQL,
22
MariaDB,

23
and TiDB.

24
In total, both MySQL and MariaDB have 12

join operators, and TiDB has 3 join operators. SQLancer+DQP covered 7 out of 12 join operators

for MySQL and MariaDB, and all 3 join operators for TiDB. For both MySQL and MariaDB, four

join operators were not covered: fulltext, which is used for full-text indexes; index_merge, which

is used for union or intersection expressions; unique_subquery, and index_subquery, both of which

are used for subqueries. MySQL and MariaDB provide a specific query hint INDEX_MERGE to enable

index_merge, but the join operator is not covered by our implementation of DQP , since it requires
specific expressions in queries. We have not found any hint or variable that directly enforces the

other three join operators. Additionally, MySQL’s join operator system was not covered, which is

used for system tables, and neither MariaDB’s ref_or_null, which is used for index lookup with null

values during joining. The reason for the two not-covered operators may be the randomness of test

case generators, as either operator is covered by the other DBMS.

Code coverage. While we were primarily interested in the number of covered unique query plans,

code coverage is a common metric for evaluating how much a system might be tested. We used

gcov,
25
a coverage tool for C/C++ language, to collect line coverage of MySQL and MariaDB, and

used cover,
26
a coverage tool for the Go language, to collect the statement coverage of TiDB. Line

coverage is the default metric for gcov, and statement coverage is the default metric for cover. We

ran SQLancer+DQP for 24 hours and 10 runs simultaneously. Due to resource limitations, each

target DBMS ran one instance, and we measured their sum line and statement coverage across 10

runs. Since TQS’s source code is unavailable, we cannot compare the code coverage between DQP
and TQS. Since DQP finds bugs in join optimization, we measured only the code coverage of query

optimization. Specifically, we measured the code in the folder sql for MySQL and MariaDB, and in

the folder planner for TiDB. The results show that SQLancer+DQP covered 22.2% and 27.7% line

coverage for MySQL and MariaDB, and 36.1% statement coverage for TiDB. The coverage appears

to be low, as less than 50% coverage for all DBMSs. However, this is expected because we cannot

enumerate all possible query plans.

22
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_system

23
https://mariadb.com/kb/en/explain/#type-column

24
https://docs.pingcap.com/tidb/stable/explain-joins

25
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

26
https://go.dev/testing/coverage/
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DQP covers thousands of unique query plans and more than half join operators for MySQL,

MariaDB, and TiDB in 24 hours.

6 DISCUSSION
We discuss some key characteristics of DQP , as well as the evaluation results of TQS.

Bug diversity. Our found bugs can affect a variety of different queries. The bugs were typically

due to incorrect optimizations, such as the incorrect index optimization shown in Listing 5, and the

incorrect join optimization shown in Listing 6. These buggy optimizations can affect other queries

as well, not only the bug-inducing test cases that make use of specific query hints or values of

system variables. For example, considering Listing 5, if the index i0 is not created with INVISIBLE

by CREATE INDEX i0 USING HASH ON t0(c0), the first query SELECT t0.c0 FROM t0 WHERE COALESCE(0.6)IN

(t0.c0) returns the incorrect result 1 without setting up any query hint or system variables.

Path to adoption. We believe that a simple testing approach has the potential for wide adoption.

From a conceptual perspective, DQP is a general black-box approach that compares the results of

different query plans, which is easy to understand. It is not necessary to instrument code for tracing

internal execution information or understand how the result is computed. From an implementation

perspective, DQP is easy to implement as we implemented DQP in less than 100 lines of Java code

per DBMS. From an integration perspective, DQP can be paired with existing databases and query

generators, or test suites. From an applicability perspective, DQP can test a significant number of

DBMSs, as 8 out of 10 most popular relational DBMSs
27
support controlling query optimization by

users. The remaining two DBMSs are Microsoft Access and Snowflake, for which we have not found

any document that explicitly explains how to manually control query optimization. Considering

these features of DQP , we argue that DQP can be widely adopted.

Contribution and novelty. The core contribution of this paper is that we demonstrated that

the simple and easy-to-understand testing DQP approach shows the same level of bug-finding

effectiveness as the more complex TQS approach. The authors of TQS mentioned the comparison of

queries with query hints in Section 5.3 of the TQS paper by disabling the derivation of ground-truth

results. Some systems in practice, such as DuckDB, already use similar techniques in their own

testing framework as well. DuckDB does this by running both an unoptimized and optimized

version of a query, and checking consistency of the results. It controls the optimizations by a

specific statement PRAGMA enable_verification, which is specific to DuckDB.
28
Our core contribution

is the insight that DQP , as a simple approach, achieves the same level of bug-finding efficiency as

the sophisticated method TQS. In general, in a testing context, we believe that simple, practical

approaches provide significant benefits over complex, but conceptually appealing ones.

The importance of TQS. TQS is the first approach for testing logic bugs in join optimizations,

and thus demonstrated the severity of the problem. Importantly, TQS provides a new paradigm for

finding logic bugs in DBMSs. In this work, we showed that a simple method achieves the same

level of bug-finding efficiency as TQS. Nevertheless, TQS can find bugs that cannot be found by

DQP . Bug #99273 in Table 1 was found without showing discrepancies across executing different

query plans of the same query. Although it is unclear how TQS derives the ground-truth result for

this query, as it lacks a JOIN, DQP cannot find this bug.

27
https://db-engines.com/en/ranking/relational+dbms

28
https://duckdb.org/dev/sqllogictest/intro#query-verification
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Inconsistent bug number of TQS. We identified 15 unique bugs in the public bug list from TQS,
while the authors of TQS claimed to have found 92 bugs. Based on our study, we suspect that the

authors confused terminology by referring to bug-inducing test cases as “bugs” and unique bugs as
“bug kinds”, which we clarified in this work. We acknowledge that bug deduplication is an open

problem [12], and we also observed duplicate issues being counted as bugs in other work.

Unavailable TQS source code. Two reasons prevent us from comparing with TQS in our study

and evaluation. First, the authors of TQS have not released its source code. We sent two emails to

all authors of TQS requesting the source code, but the authors replied that the source code was

not ready for release: “I’m currently working on a follow-up project that builds upon the research I
presented. As a result, I’m in the process of refining and enhancing the codebase for both projects. Once
this work is complete, I plan to make the source code available as open source or share it with colleagues
who express an interest.” We also noticed that the authors published another tool demonstration

paper [46] that includes the implementation of TQS. Unfortunately, after carefully checking and

debugging its source code,
29
we found that the repository lacks the core approach implementation

of TQS, as also observed by another interested party.30 Second, it is challenging to re-implement TQS
as it consists of complex steps, with important details not being described in the paper. For example,

the authors claimed “We directly use these data-driven schema normalization methods to generate
our testing database schema”, but it is not clear what concrete method they used to split the wide

table and what sub-tables are generated. TQS adopts Abstract Syntax Tree (AST)-based random

query generation, which is implemented “similarly to RAGS and SQLSmith”, but it is insufficient

to know what queries it can generate, such as what expressions are generated and the maximum

depth of the AST. While it is understandable that these are not described in the paper, it prevented

us from reimplementing the approach for comparison.

Threats to Validity. Our evaluation results face potential threats to validity. A major concern is

that TQS source code and TQS’s bug reports on PolarDB are not available. To alleviate this risk, we

communicated with the authors of TQS, who told us that TQS’s source code has not been ready

for release yet. Because it is challenging to re-implement TQS, we extracted the public bug list

and conducted a rigorous study described in Section 2. From a practical perspective, we compared

the bugs found by TQS and DQP to evaluate their bug-finding capabilities. From a theoretical

perspective, we discussed their conceptual differences in this section. Another concern is the

correctness of our implementation. To mitigate this risk, we built DQP on a popular DBMS testing

framework, SQLancer , and made the source code publicly available. The last concern is the reliability

of the results we presented. To validate that our found bugs are real bugs, we reported each found

bug to the DBMSs’ developers and annotated the bug status according to developers’ replies. We

also made all bug reports public.

7 RELATEDWORK
We briefly summarize the works that are most closely related to this work.

Finding optimization bugs. The query optimizer is one of the most critical components in DBMSs,

so its reliability is important and has attracted much attention for testing. NoREC [40] detects

logic bugs in query optimizations by checking whether the result of an optimized query equals

an unoptimized query. Apart from logic bugs, performance bugs also exist in query optimizations.

If a query optimization chooses an unexpectedly inefficient query plan, it can be considered a

performance bug. Jung et al. proposed APOLLO [23], which compares the execution times of a

29
https://github.com/xiutangzju/dlbd/tree/b85b1f

30
https://github.com/xiutangzju/dlbd/issues/1
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query on two versions of a database system to find performance regression bugs. Liu et al. proposed
AMOEBA [26], which compares the execution time of a semantically equivalent pair of queries to

identify an unexpected slowdown. Ba et al. proposed CERT [4] to find performance issues through

testing cardinality estimation. In contrast, DQP specifically finds logic bugs in query optimizations

focusing on join optimizations.

Manipulating query plans. Various techniques have been proposed to manipulate query plans.

AEM [35] uses query hints to switch query plans for bypassing bugs in run-time. PgCuckoo [20]

provides a plugin for PostgreSQL, so that PostgreSQL can execute arbitrary query plans. However,

a significant challenge, as claimed in the PgCuckoo paper, is that manually manipulating query

plans has a high invalidity rate as the operations in a query plan typically have dependencies on

each other. TAQP [19] uses query hints to switch query plans and measures execution time to

check whether the query plan chosen by query optimizers is the optimal one. Compared with these

methods, DQP adopts a black-box manner to manipulate query plans by query hints and system

variables for finding logic bugs.

DBMS fuzzing. Fuzzing is an efficient technique to find bugs in DBMSs, but aims to find security-

relevant bugs, such as memory errors. SQLSmith [49], Griffin [16], DynSQL [22], and ADUSA [26]

used grammar-based methods to generate test cases for finding memory errors. Squirrel [51],

inspired by grey-box fuzzers such as AFL [48], used code coverage as guidance to generate diverse

test cases for finding memory errors. Different from these methods, DQP aims to find logic bugs in

DBMSs, especially in query optimizations.

Methodology. Several existing works in other domains adopt a similar methodology as this work

to propose a simple technique that can outperform an existing sophisticated one. Kali [37] uses a

simple method that only deletes functionality and outperforms previous sophisticated techniques

for automatically generating software patches. Fu et al. [17] demonstrated that a simple tuned

Support Vector Machine (SVM) can outperform a sophisticated Convolutional Neural Network

(CNN) algorithm. This paper was also inspired by Kali.

Differential and metamorphic testing. Differential testing is a mature testing technique that

compares the results of the same test case on different systems, andwas proposed byMcKeeman [28].

Metamorphic testing [10, 11] is a method that checks the correctness of a system by applying

transformations to its input and examining the relationship between the original and transformed

results. A significant difference between both methods is that metamorphic testing works on a

single system and differential testing works on multiple systems. At a conceptual level, DQP can

be classified as a metamorphic testing approach, in which we check whether a query returns the

same result with different query plans. Existing metamorphic testing methods for testing DBMSs,

such as TLP [41] and NoREC [40], which we mentioned above, apply predefined rules to modify

predicates and move SQL clauses. Compared to these methods, DQP is simpler, as we only add

query hints or set system variables.

Query generation. For query generation, two prominent approaches exist: targeted and random

query generation. Targeted query generation, as proposed by Bati et al. [5], involves integrating
execution feedback, such as code coverage, to guide the generation process toward a specific code

location. Another method by Khalek et al. [1] employs a solver-backed technique to produce queries

that are both syntactically and semantically correct. Given the computational complexity associated

with generating queries that adhere to cardinality constraints, heuristic algorithms have been

introduced [9, 30]. On the other hand, random query generation, exemplified by SQLsmith [49],

employs a predefined grammar to stochastically generate queries that are semantically valid,
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leading to the discovery of over 100 bugs in widely-used Database Management Systems (DBMSs).

APOLLO [23] similarly relies on a predefined grammar for query generation to uncover regression

performance issues. Importantly, DQP is adaptable to any query-generation methodology.

Database state generation. Similarly, for database state generation, two principal strategies are

employed: targeted and random generation. Targeted database state generation, as demonstrated

by QAGen [7], leverages symbolic execution to delineate constraints and subsequently generate

queries that satisfy these constraints. SPQR [6] is another method that produces a database state

corresponding to a given query and its anticipated outcomes. Random database state generation, as

proposed by Gray et al. [18], introduces parallel algorithms to efficiently generate databases with

billions of records. Coverage-based methodologies [25, 51] generate database states by modifying

given SQL statements that were used in creating the original state. QPG [3] aims to generate diverse

database states with the guidance of query plans. Similarly, DQP is amenable to any database state

generation technique.

8 CONCLUSION
In this paper, we have studied the state-of-the-art testing approach for joins, TQS, and have proposed
a simple, yet effective alternative approach, DQP testing. The core idea of DQP is comparing the

consistency across the executions of different query plans of the same query, which we derive by

adding query hints or setting system variables. Compared to TQS, DQP only needs to compare

results instead of constructing multiple graphs and tables for deriving ground-truth results, and

supports finding bugs in more query optimizations than equijoin optimizations. Our evaluation has

demonstrated that DQP can find 14 of the 15 unique bugs and all 10 join-related bugs found by TQS.
Additionally, DQP has found 26 previously unknown and unique bugs in MySQL, MariaDB, and

TiDB, which were overlooked by TQS. As with TQS, DQP complements existing testing approaches,

which find logic bugs also in other components than join optimization. Indeed, 81% of the logic bugs

found by DQP cannot be found by NoREC and TLP , and DQP overlooked 86% of the bugs found

by NoREC and TLP . DQP requires little implementation effort, is compatible with any test case

generation methods, is similarly efficient as TQS, and is a black-box testing method. We encourage

DBMS developers to use DQP in practice, as a cost-efficient way to find critical bugs in DBMSs.
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