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Abstract—Database systems are widely used to store and query
data. Test oracles have been proposed to find logic bugs in such
systems, that is, bugs that cause the database system to compute
an incorrect result. To realize a fully automated testing approach,
such test oracles are paired with a test case generation technique;
a test case refers to a database state and a query on which
the test oracle can be applied. In this work, we propose the
concept of Query Plan Guidance (QPG) for guiding automated
testing towards “interesting” test cases. SQL and other query
languages are declarative. Thus, to execute a query, the database
system translates every operator in the source language to one
of the potentially many so-called physical operators that can be
executed; the tree of physical operators is referred to as the
query plan. Our intuition is that by steering testing towards
exploring a variety of unique query plans, we also explore more
interesting behaviors—some of which are potentially incorrect.
To this end, we propose a mutation technique that gradually
applies promising mutations to the database state, causing the
DBMS to create potentially unseen query plans for subsequent
queries. We applied our method to three mature, widely-used,
and extensively-tested database systems—SQLite, TiDB, and
CockroachDB—and found 53 unique, previously unknown bugs.
Our method exercises 4.85–408.48× more unique query plans
than a naive random generation method and 7.46× more than a
code coverage guidance method. Since most database systems—
including commercial ones—expose query plans to the user, we
consider QPG a generally applicable, black-box approach and
believe that the core idea could also be applied in other contexts
(e.g., to measure the quality of a test suite).

Index Terms—automated testing, test case generation

I. INTRODUCTION

Database Management Systems (DBMSs) are fundamental
software systems used to store, retrieve, and run queries on
data. They are used in almost every computing device [1]–
[3], thus any bug has a potentially severe consequence. Logic
bugs, which refer to incorrect results returned by DBMSs,
are a particularly challenging category of bugs to find as
they silently compute an incorrect result—unlike, for example,
crash bugs [4], [5], which cause the process to be terminated.
Consider Listing 1, where the SELECT statement triggers a logic
bug that causes the returned result to unexpectedly contain a
record, while it should be empty. Finding such bugs requires
a so-called test oracle, which validates the DBMS’ result.
Recently, effective test oracles [6]–[8] have been proposed that
brought validating the results of such queries within reach.

Besides a test oracle, automatically finding logic bugs
requires a test case generation method. For finding logic bugs
in DBMSs, a test case refers to a database state and a query
on which the test oracle can be applied. Test case generation
techniques face two main challenges. First, “interesting” test

cases should be generated that stress various parts of the
DBMS to increase the chance of finding bugs in them. No clear
definition or metric on what an interesting test case constitutes
exists, as it is unknown in advance by which logic bugs a
DBMS is affected. Second, the test cases should be valid
both syntactically and semantically while also corresponding
to the structure imposed by the test oracle; for example, the
NoREC oracle requires a query with a WHERE clause, but no
more complex clauses (e.g., HAVING clauses) [7] while also
forbidding various functions and keywords from being used
(e.g., aggregate functions).

Both generation-based and mutation-based approaches have
been proposed to be paired with the above test oracles [6]–
[8]. SQLancer uses a generation-based approach in which test
cases are generated adhering to the grammar of the respective
SQL dialects as well as the constraints imposed by the test
oracles. Overall, this approach makes it likely to generate
valid test cases; we observed that about 90% of the queries
generated by SQLancer for SQLite are valid. However, the test
case generation approach receives no guidance that could steer
it towards producing interesting test cases. Recently, SQL-
Right [9] was proposed to address this shortcoming. SQLRight
mutates test cases aiming to maximize the DBMS’ covered
code, thus building on the success of grey-box fuzzing [10],
[11]. While SQLRight improved on SQLancer’s test case
generation in various metrics, code coverage alone was shown
to be an imperfect proxy metric for DBMSs [12] and stateful
systems in general [13], as it cannot precisely model the state
of databases. Despite using mutation operators that aim to
maximize the validity of queries, SQLRight achieves a lower
rate of valid queries of 40% [9]. Other test case generation
approaches have been proposed that aim at finding crash bugs
and thus disregard the test oracle’s constraints, which is why
we do not further consider them. These include mutation-
based approaches such as Squirrel [5] or DynSQL [14], and
generation-based ones such as SQLsmith [15] or RAGS [16].

In this paper, we propose Query Plan Guidance (QPG),
a technique that utilizes query plans to guide the test-case
generation process towards interesting test cases. A query
plan is a tree of operations that describes how an SQL
statement is executed by a DBMS. It is readily provided by
DBMSs—users can typically obtain a textual representation
using an EXPLAIN SQL statement—and is typically inspected
by DBMS users for tuning the performance of queries. Our
insight is that a query plan provides a compact and high-level
summary of how a query is executed, therefore, covering more
unique query plans increases the likelihood of finding logic



Listing 1. A bug found by QPG in SQLite due to an incorrect use of an
index in combination with a JOIN. Given the same SELECT, the left query
plan is produced if no index is present, while the right one uses the index.
1 CREATE TABLE t1(a INT, b INT);
2 INSERT INTO t1(a) VALUES(2);
3 CREATE TABLE t2(c INT);
4 CREATE TABLE t3(d INT);
5 INSERT INTO t3 VALUES(1);
6 CREATE INDEX i0 ON t2(c) WHERE c=3;
7
8 SELECT * FROM t2 RIGHT JOIN t3 ON d<>0 LEFT JOIN

t1 ON c=3 WHERE t1.a<>0; -- {} {|1|2|}
9 --------------------------------------------------

10 QUERY PLAN
11 WITHOUT INDEX i0: WITH INDEX i0:
12 |--SCAN t2 |--SCAN t2 USING
13 COVERING INDEX i0
14 |--SCAN t3 |--SCAN t3
15 |--SCAN t1 |--SCAN t1
16 ‘--RIGHT-JOIN t3 ‘--RIGHT-JOIN t3
17 ‘--SCAN t3 ‘--SCAN t3

bugs. Consider Listing 1, which illustrates two scenarios of
executing test cases with SQLite. In the first scenario, the
CREATE INDEX statement highlighted in red is omitted, causing
the SELECT statement to return an empty result. This result
is expected, since column c in table t2 has no data and
the join condition c=3 is false. In the second scenario, the
CREATE INDEX statement is executed, which causes SQLite to
unexpectedly fetch the row {|1|2|}. An index is an auxiliary
data structure used by queries [17], which should not have
any semantic effect. While in both scenarios, the same query is
executed, the query plans shown below the test cases differ due
to the two different database states. The left query plan for the
correct execution indicates that the records from table t2 are
read sequentially (SCAN t2). In contrast, the right query plan
indicates that the DBMS used the index to read the data (SCAN
t2 USING COVERING INDEX i0), which was incorrect. Besides
indexes, various other factors can influence query plans (e.g.,
data characteristics).

To generate valid queries that correspond to the oracles’
constraints, we propose mutating the database state rather
than the queries. Specifically, we re-use the existing random
grammar-based generation approach of SQLancer [6] to gen-
erate the queries. However, we record all seen query plans
for a given database state and mutate this state when no new
query plans are observed, indicating that the current database
state’s potential for enabling unobserved query plans has
been saturated. We modeled the decision-making process for
selecting the most promising mutation—an SQL statement that
modifies the database state—as a multi-armed bandit problem
and assigned a high priority to the SQL statement that results
in the most new query plans across all executions. The multi-
armed bandit problem is a model in which a fixed limited set
of resources have to be allocated between competing choices
in a way that maximizes the expected gain [18].

We implemented QPG in SQLancer and evaluated it on
SQLite, TiDB, and CockroachDB. We found 53 unique, pre-
viously unknown bugs, all of which have been acknowledged

by the developers. Of these, 35 have already been fixed. Three
bugs in SQLite had been hidden for more than six years before
we found them, despite the extensive existing testing efforts
by the authors of SQLancer and SQLRight, demonstrating
the practical need for a more efficient test case generation
approach. To trigger many of the bugs, complex query plans
are required, indicated by the average length of query plans
being 2.47× longer than that of the previously found bugs.
In terms of efficiency, our QPG-based implementation covers
4.85–408.48× more unique query plans than SQLancer and
SQLRight in 24 hours.

Overall, we make the following contributions:
• We studied the query plans of the queries in previously-

found bugs to gauge the idea’s potential;
• We propose Query Plan Guidance as a general idea for

utilizing query plans for testing;
• We propose a concrete testing approach that mutates

database state rather than queries to be compatible with
existing test oracles;

• We implemented and evaluated the approach, which has
found 53 unique, previously unknown bugs in widely-
used DBMSs.

II. BACKGROUND

Database management systems. Database Management Sys-
tems (DBMSs) serve as an interface between applications and
back-end data, helping users to store, manipulate, and query
data based on an abstract data model. The relational data
model [19] is the most common model that has been adopted
by most modern DBMSs. In this paper, we focus on testing
such relational DBMSs.

Structured Query Language. The most commonly used lan-
guage for interacting with relational DBMSs is the Structured
Query Language (SQL) [20], which has been standardized by
ISO/IEC 9075. SQL consists of many types of statements [21],
which can be classified into three main sub-languages:

1) Data Query Language (DQL), which provides a SELECT

statement to query data.
2) Data Definition Language (DDL), which is used to create

and modify the schemas of data objects, for example,
CREATE, DROP, and ALERT.

3) Data Manipulation Language (DML), which is used to
modify the contents of data objects, for example, INSERT
and UPDATE.

While DDL and DML statements can affect the database state,
queries (i.e., DQL statements) typically cannot. Our test cases
consist of DQL, DDL, and DML statements.

Query plans. A query plan is a tree of operations that
describes how an SQL statement is executed by a specific
DBMS. Although not specified by the standard, most mature
relational DBMSs, including the 10 most popular relational
DBMSs according to the DB-Engines ranking,1 allow users to
query a textual representation of a query plan by prefixing
a query with EXPLAIN. DBMSs cannot always determine

1https://db-engines.com/en/ranking/relational+dbms
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the most efficient query plan [22], [23], requiring users to
understand and optimize performance-critical queries (e.g., by
providing hints to the DBMS) based on their query plans. For a
better debugging experience, exposed query plans may include
additional information, such as the estimated cost or predicate
expressions (e.g., used in WHERE clauses). Database literature
distinguishes between logical and physical query plans [24],
the latter which is typically exposed by the DBMSs. While
the logical query plan closely corresponds to the original
declarative query, the physical query plan maps every logical
operator to a so-called physical one that can be executed by the
DBMS. For example, to translate a read operation on a table,
the DBMS might choose one of potentially multiple so-called
physical access methods (e.g., a full table scan, or a partial
scan with index). Similarly, to join two tables, the DBMS
might decide between multiple join algorithms (e.g., hash join
or nested loop join) [24]. Various factors influence what query
plan a DBMS derives for a given query, such as characteristics
of the data stored in the database [25], the existence of
auxiliary data structures (e.g., indexes) [26], the tables as well
as views present in the database, and configuration options.
In this work, we use query plans in a black-box way, that is,
without regarding the semantics of operators to guide testing.

Logic bugs. Logic bugs are bugs that cause a system
to compute incorrect results. Recently, Rigger et al. pro-
posed several oracles [6]–[8] that have found hundreds
of unique bugs in widely-used DBMSs. In this work,
we used the two latest test oracles, which represent the
state of the art. Ternary Logic Partitioning (TLP) ex-
pects a query and derives multiple more complex queries,
each of which computes a partition of the result to then
check whether their results are equivalent. For example,
from SELECT * FROM t0 and a random predicate t0.c0>0,
TLP derives SELECT * FROM t0 WHERE (t0.c0>0), SELECT

* FROM t0 WHERE NOT (t0.c0>0), and SELECT * FROM t0

WHERE (t0.c0>0)ISNULL, whose combined records must be
equivalent to the first query. Non-optimizing Reference Engine
Construction (NoREC) [7] checks for inconsistent results
values of a predicate used in a query that the DBMS might
optimize and one that is used in a query that is difficult to
optimize. For example, for a predicate t0.c0>0, NoREC com-
pares the number of rows returned by a query SELECT * FROM

t0 WHERE (t0.c0>0) with how often TRUE is contained in the
result returned for SELECT (t0.c0>0)FROM t0. Both oracles
have constraints on the query formats. For example, NoREC
requires a WHERE clause, but forbids aggregate functions and
other more complex clauses. In principle, our method can be
paired with any oracle.

III. QUERY PLAN STUDY

To investigate the potential of using query plans as guidance,
we studied the uniqueness and complexity of query plans of
the queries in previously-found bugs. We hypothesized that
we would see a wide variety of query plans, suggesting that
a bug-finding technique optimized for exploring more unique
query plans might be effective.

TABLE I
SUBJECTS FOR THE QUERY PLAN STUDY.

DBMS Version LoC EXPLAIN Statement

CockroachDB 19.2.12 1.1M EXPLAIN (OPT)...
DuckDB 0.19 59K EXPLAIN...
H2 2.0.202 0.3M EXPLAIN...
MariaDB 10.4.25 3.6M EXPLAIN FORMAT=’JSON’...
MySQL 5.7.33 3.8M EXPLAIN FORMAT=’JSON’...
PostgreSQL 11.16 1.4M EXPLAIN (COSTS FALSE)...
SQLite 3.30.0 0.3M EXPLAIN QUERY PLAN...
TiDB 3.0.12 0.8M EXPLAIN...

TABLE II
QUERY PLANS OF THE QUERIES IN PREVIOUSLY-FOUND BUGS. LENGTH
INDICATES THE AVERAGE NUMBER OF OPERATIONS IN A QUERY PLAN.

Query Plans

DBMS Bugs Sum Unique Length

CockroachDB 68 37 32 3.43
DuckDB 75 59 18 2.00
H2 19 10 7 3.70
MariaDB 7 5 5 1.00
MySQL 40 35 22 1.03
PostgreSQL 31 9 3 2.33
SQLite 193 118 62 2.14
TiDB 62 43 32 5.07

Avg: 2.59

Subjects. We chose the public bug reports from SQLancer
as our subjects. SQLancer provides a public list2 including all
found bugs and corresponding test cases for 499 bug reports
across 9 DBMSs. We excluded 4 bugs found in the DBMS
TDEngine, as this DBMS does not expose query plans. The
query plan of a given query can vary over versions; thus, to
obtain accurate query plans, we chose the most relevant release
versions when the corresponding bugs were found. The details
of the chosen DBMSs are shown in Table I.

Obtaining query plans. For all 495 bug-inducing test cases,
we instrumented all queries (i.e., SELECT statements) by using
EXPLAIN statements as listed in Table I. Depending on the
DBMS, query plans might include various additional auxiliary
information. We identified three such types. One type is the
estimated cost (e.g., in PostgreSQL), which differs for almost
every query. The second type is expressions in WHERE clauses,
which are included in the query plan by some DBMSs (e.g.,
CockroachDB). The third type is random identifiers, which are
used to distinguish operations in a query plan (e.g., MariaDB
and MySQL). To exclude such auxiliary information, we ac-
cordingly adjusted the parameters of the EXPLAIN statements,
as shown in Table I. Lastly, we removed the names of tables,
views, and indexes of the obtained query plans to distinguish
query plans based on their structure only. This was based on
the intuition that two query plans with the same execution

2https://github.com/sqlancer/bugs
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logic, but different table names, would be processed similarly
by the DBMSs (e.g., SCAN t1, and SCAN t2).

Uniqueness analysis. Table II shows the query plan distribu-
tion. In total, we obtained 316 query plans, of which 57.28%
were unique. The number of query plans is lower than that
of test cases because 1) not all test cases have queries and 2)
some queries that previously exposed bugs were rejected by
subsequent versions of the DBMSs. The minimal percentage
of unique query plans is 30.51% in DuckDB. The maximum
one is 100.00% in MariaDB, due to a low number of test cases.
Overall, for the queries in previously-found bugs, the variety of
different query plans indicates that covering a wider variety of
query plans might increase the likelihood of discovering bugs.

Query plans of the queries in previously-found bugs vary
significantly, as 57.28% of the query plans are unique.

Complexity analysis. We examined the complexity of the
query plans of the queries in previously-found bugs. A query
plan with many operations is due to a complex database state
or query. For instance, in SQLite, a query plan that retrieves
data from two tables requires at least three operations: SCAN
table t0, SCAN table t1, and MERGE results, which is more
complex than SCAN table t0 alone. As shown in the Length
column of Table II, the average number of operations per query
plan is 2.59, which illustrates that the majority of bug-related
query plans are compact. We further found that the most
frequent query plan across eight DBMSs is SCAN table t0,
which represents a sequential scan on a single table, without
using an index. For example, in SQLite, 26 of 118 query
plans consist of a single table scan. This demonstrates that
the query plans for the previously-found bugs are simple.
While this could indicate that, compact and simple query
plans are sufficient to trigger these previously found bugs—
as suggested by the small-scope hypothesis [27]—it could
also be that existing approaches have focused their testing on
simple queries and database states. We speculate that covering
more complex query plans might increase the likelihood of
discovering bugs.

Query plans of the queries in previously-found bugs are
compact and simple, as the average number of operations
in a query plan is only 2.59.

IV. APPROACH

To efficiently detect logic bugs in DBMSs, we propose to
mutate databases with Query Plan Guidance (QPG) towards
more unique and increasingly complex database states. Our
insight is that the internal execution logic of the DBMS for
a given query is reflected by its query plan and, therefore,
covering more unique query plans increases the likelihood of
finding logic bugs. Compared with naive random generation,
our method gradually mutates database states enabling subse-
quent queries to cover more unique and complex query plans.
We chose to mutate database states rather than queries, since
test oracles have various constraints on queries, which are
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Fig. 1. Overview of QPG. The dashed lines refer to the data affected by 4⃝
in the next iteration.

difficult to meet using mutational approaches [9]. Compared
with other coverage-based grey-box testing tools for DBMSs,
such as Squirrel [5] and SQLRight [9], we consider our
method as black-box testing, as QPG requires no access to
the source code of the DBMS and uses information readily
provided by mature DBMSs. Thus, the technique can also be
applied to commercial closed-source DBMSs.

System overview. Figure 1 shows an overview of our QPG
realization based on Listing 1. Given an initial database state
at 1⃝, QPG generates a random SQL query at 2⃝ and executes
it on the database to validate the query’s result using the test
oracle. If the oracle indicates a bug, QPG outputs a bug report
and restarts the testing process. Otherwise, it records the query
plan and appends it to the query plan pool at 3⃝. Typically,
the execution continues at 2⃝ with the same database state.
However, if no new unique query plan has been observed after
a fixed number of iterations, QPG mutates the database state
at 4⃝ by applying a mutation operator to the current database
state to create a new one, assuming that this new state will
subsequently lead to new unique query plans being explored.

A. Database States. ( 1⃝)

The initial database state can be either randomly generated
or manually given. In our implementation, we generate it
by randomly executing DDL and DML statements. To avoid
empty database states, we execute CREATE TABLE statements
first. For example, to create the initial database state in
Figure 1, we execute lines 1–5 in Listing 1. We do not directly
manipulate database files, since they are highly structured [28],
and any unexpected byte may incur an error that would impede
the testing process.

B. Query Generation and Validation. ( 2⃝)

Query generation. We generate queries whose results we
subsequently automatically validate to find bugs. The gener-
ated queries must comply with two main constraints. First,



queries must be semantically valid with respect to the database
state. For example, they must reference only existing ta-
bles and views. Second, they must adhere to the constraints
imposed by the test oracles. For example, the NoREC test
oracle requires a WHERE clause, but forbids other clauses (e.g.,
HAVING or GROUP BY). To address this, we adopt SQLancer’s
rule-based random generation approach that generates queries
based on the SQL dialects’ grammar adhering to the imposed
constraints. Many query generation approaches have been
proposed [12], [29]–[34], and our method can, in principle,
be paired with any of these query generation methods.

Validation. We use the state-of-the-art logic-bug ora-
cles NoREC [7] and TLP [6] to validate the queries’ re-
sults. Both are metamorphic testing approaches [35] and,
given a query, derive another query whose result set is
used to validate the original query’s result. In Figure 1,
given the three tables and the test oracle, we generate
the query SELECT * FROM t2 RIGHT JOIN t3 ON d<>0 LEFT

JOIN t1 ON c=3 WHERE t1.a<>0. Since the test oracle indi-
cates that the empty result returned is correct, execution
continues at 3⃝. If the test oracle indicates a bug, we output
the bug report and restart the testing process.

C. Query Plan Collection. ( 3⃝)

We collect query plans by instrumenting queries using EX-
PLAIN statements, which is the same approach as presented in
Section III. In Figure 1, the statement to obtain the query plan
is EXPLAIN QUERY PLAN SELECT * FROM t2 RIGHT JOIN t3

ON d<>0 LEFT JOIN t1 ON c=3 WHERE t1.a<>0. We obtain
the query plan (shown in the left part of lines 12–17 in
Listing 1), and remove table and index names.

We insert query plans into the query plan pool in which
we store unique query plans. The pool is implemented as a
hash table in which the keys are query plans, and the values
are the corresponding query strings. Given a query plan, we
check whether the query plan exists in the pool, and insert it
if not. In Figure 1, the pool is initially empty, so we insert
the query plan (the first line at 3⃝). If no new query plan is
inserted into the pool for a fixed number of queries, we invoke
4⃝ aiming to cause the DBMS to explore more unique query

plans. Otherwise, we continue to test the DBMS using the
same database state at 2⃝. A higher number indicates that we
test the DBMS using more queries on a single database state,
while a lower one means that we test the DBMS using more
database states. The number is set to 1,000 by default, which
we determined to work well empirically.

D. Database State Mutation. ( 4⃝)

If no new query plan has been observed for a fixed number
of queries, we invoke the database state mutation 4⃝, which
manipulates the database state, aiming to cause the DBMS to
explore different query plans for the subsequent queries.

As mutation operators, we consider both the same DDL
and DML statements used for generating the initial database
state, such as CREATE TABLE, CREATE INDEX, and ANALYZE. A
key challenge is to apply promising mutations that likely

result in queries triggering new query plans. We model this
task as the Multi-Armed Bandit (MAB) problem [18], [36],
which is a popular and efficient method that has been used in
various fuzzing works [37]–[40]. In MAB, a fixed limited set
of resources has to be allocated between competing choices
to maximize the expected gain. In our scenario, given a
limited computational resource, we choose the SQL statements
(choices) to mutate database states to maximize the number
of covered unique query plans (gain).

To maximize the expected gain, an automated agent at-
tempts to acquire new knowledge (called “exploration”) and
optimizes its decisions based on existing knowledge (called
“exploitation”). In our problem scenario, given the knowledge
that the gains of only some mutation operators have been ob-
served, we consider selecting the next mutation operator from
either explored or unexplored mutation operators. Making the
decision based on explored mutation operators (exploitation)
tends to increase the gain, but may miss potentially higher
gain from unexplored mutation operators. Many algorithms
have been proposed to strike a balance between exploration
and exploitation. We adopt the classic episode greedy algo-
rithm [41], which chooses the operator with the highest known
gain with a certain probability and a random one otherwise.

Our algorithm works as follows. At t times when database
state mutation 4⃝ is invoked, we choose one mutation operator
followed by Equation 1. k is the number of candidate mutation
operators. µ̂i(t) is the known gain of the mutation operator i at
time t. ϵ is a fixed probability ranging from 0 to 1; its default
value is 0.7, which we determined to work well empirically.
With (1− ϵ) probability, we choose the operator that has the
maximum known gain and randomly choose one otherwise.

j(t) =

{
argmaxi=1...k

(
µ̂i(t)

)
(1− ϵ)

random(k) (ϵ)
(1)

Encoding known gain µ̂i. µ̂i is measured as weighted
average gain—different from the standard algorithm, which
uses an unweighted average—across all iterations where i
was chosen. A DBMS is a stateful system. The database state
depends not only on the last applied mutation operator, but also
on the previous database state. Applying the same mutation
operator on changing database states creates different database
states, so the gain of a mutation operator across iterations is not
independent and identically distributed. For the same mutation
operator, the gain in the last iteration is closer to the real gain
on the last database state. To approximate the known gain, we
use a weight average number in which the latter gain has a
higher weight than the former gain. Equation 2 is our equation
for updating µ̂i in each iteration. Q is the gain for the last time
i was chosen. w is the weight of Q, which is a constant ranging
from 0 to 1; its default value is 0.25, which we determined
to work well empirically. Independent from the number of
iterations, the prior gains only take up (1−w) weight for µ̂i.
For example, given w = 0.1, µ̂i(999) = 0.1, Q = 2 for the
1, 000th iteration, the µ̂i(1000) = 0.1+ (2− 0.1) ∗ 0.1 = 0.29,
which is much higher than the unweighted average number
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Fig. 2. The workflow of measuring the known gain at 4⃝.

0.1 + (2 − 0.1)/1000 = 0.1019 and closer to the Q. For
efficiency, all parallel testing processes share the same µ̂i.

µ̂i(t+1) = µ̂i(t) + (Q− µ̂i(t)) ∗ w (2)

Encoding instant gain Q. Q is measured by the proportion
of queries that explore new query plans when they are executed
on the latest database state. The queries include those in the
query plan pool, and a set of newly generated queries based
on the latest database state. The query plan pool includes all
unique query plans and corresponding queries, which we re-
execute to evaluate how many new query plans are explored for
the same queries. To ensure that the queries in the query plan
pool are always valid, we drop the invalid ones that are due to
the changes of the database state. We observed that, in practice,
this limits the pool to a reasonable size (< 8, 000 entries).
However, for some mutation operators, such as CREATE TABLE,
none of these queries is related to the newly-created table, so
no new query plan is observed. It would be unjust to judge its
gain as zero, so we generate a set of new queries and examine
how many new query plans are explored. For example, after
applying the mutation operator i, 2/50 queries in the query
plan pool and 10/20 queries in the set of newly generated
queries explore unseen query plans, meaning that we compute
the instant gain as Q = 2/50 + 10/20 = 0.54.

Figure 2 shows the workflow of measuring the known gain
µ̂i at 4⃝. If the mutation operator 3 is chosen in iteration t
due to its highest j(t), we update µ̂3 in the next iteration t+1
with the queries that are generated after iteration t and the
queries of the query plan pool in iteration t. Following that,
we calculate j(t+ 1) and choose the mutation operator k.

In Figure 1, we apply CREATE INDEX i0 ON t2 (c)WHERE

c=3, which creates an index i0 at 1⃝. Suppose we generate
the same query at 2⃝, then we observe the new query plan
shown on the right in lines 12–17 in Listing 1 and insert it to
the query plan pool. As a result, the bug is exposed at 2⃝.

Lastly, we clear the database state after a fixed number of
tested queries aiming to maximize the number of covered
unique query plans. In general, by gradually mutating the
same database state, we explore more unique and increasingly
complex database states. However, the current database state
may limit the possible state space to mutate into, which is why
we clear the database state and restart the testing process after

a fixed number of tested queries. The number is configurable
and is set to a reasonable default value of 1,000,000, which
we found to work well in our experiments (see Section V).

E. Implementation

We implemented the described QPG approach in SQLancer3

and subsequently refer to our prototype as SQLancer+QPG.
In addition, we updated SQLancer to support the latest version
of SQLite which has three new features, namely RIGHT JOIN,
FULL OUTER JOIN, and STRICT. We implemented our method
in around 1,000 lines of Java code and adapted each DBMS-
specific component in additional 100 lines of Java code, such
as defining the specific statements for collecting query plans.
We designed our approach to be compatible with existing
testing tools; thus, for the Database States 1⃝ and Query
Generation and Validation 2⃝ steps, we reuse the implemen-
tation of SQLancer. We implemented the algorithm described
in Database State Mutation 4⃝ as a standalone module that
is reused across DBMSs. We used DDL and DML statements
supported by SQLancer as mutation operators (23 mutations
for SQLite, 13 mutations for TiDB, and 17 mutations for
CockroachDB) which may contribute to covering more unique
query plans, and the detailed list can be found in our artifact.
To avoid a large number of tables and indexes causing a low
testing throughput, we restricted their maximum number to an
arbitrary, but reasonable limit—a maximum of 10 tables and
20 indexes.

V. EVALUATION

To evaluate the effectiveness and efficiency of QPG in
finding bugs in DBMSs, we seek to answer the following
questions based on our prototype SQLancer+QPG:
Q.1 New Bugs. Can QPG help with finding new bugs? Are

complex query plans required to find these bugs?
Q.2 Covering unique query plans. Can QPG cover more

unique query plans than naive random generation and
code-coverage guidance methods?

Q.3 Bug Finding Efficiency. Can QPG find bugs more effi-
ciently than naive random generation and code-coverage
guidance methods?

Q.4 Sensitivity Analysis. What is the contribution of each
component of QPG? How does QPG perform under
different configurations?

Tested DBMSs. We tested SQLite, TiDB, and CockroachDB.
SQLite is the most popular embedded DBMS—embedded
DBMSs are built together with and run in the same process as
the application—and is used in every IOS and Android smart-
phone [1]. TiDB and CockroachDB are popular enterprise-
class DBMSs, and their open versions on Github are highly
popular as they have been starred more than 31.9k and 25.2k
times. They are widely used and have thus also been used
in other DBMS testing works [5], [6], [8], [9]. We did not
consider other popular DBMSs due to various reasons. For
example, for MySQL and closed-source DBMSs, bug fixes can

3https://github.com/sqlancer/sqlancer

https://github.com/sqlancer/sqlancer


TABLE III
THE NUMBER OF NEW BUGS FOUND BY SQLancer+QPG.

DBMS Crash Error Logic All

SQLite 0 5 23 28
TiDB 2 4 3 9
CockroachDB 3 11 2 16

Sum: 5 20 28 53

be validated only after new releases; until then, it is difficult to
identify new bugs, as already-known bugs might be repeatedly
triggered. Furthermore, for some DBMSs, such as MySQL,
many previously-reported bugs remain unfixed, impeding the
testing process, which was also noted in prior work [6]. As
a black-box method, QPG supports any DBMS, regardless of
what programming languages it is written in; SQLite is written
in C, while TiDB and CockroachDB are written in Go. For Q1,
Q2, and Q4, we used the latest available development versions
(SQLite: 3.39.0, TiDB: 6.3.0, CockroachDB: 23.1). For Q3, to
make a fair comparison, we chose the historical versions of
DBMSs that all tools have tested and can find bugs in (SQLite:
3.36.0, TiDB: 4.0.15, and CockroachDB: 21.2.2).

Baselines. We compared SQLancer+QPG with SQLancer
and SQLRight. While both of them have been designed to
find logic bugs, their test case generation techniques differ.
SQLancer implements a naive random generation method. It
is the baseline on which SQLancer+QPG is built. It has been
starred more than 1,000 times on GitHub and is widely used by
companies. SQLRight is the state-of-the-art tool and uses code-
coverage guidance. By comparing with them, we gain insights
into the benefits of QPG against naive random generation and
code-coverage-guided methods for finding logic bugs.

Experimental infrastructure. We conducted all experiments
on an Intel(R) Xeon(R) Gold 6230 processor that has 40
physical and 80 logical cores clocked at 2.10GHz. Our test
machine uses Ubuntu 20.04 with 768 GB of RAM, and a
maximum utilization of 40 cores. We repeated all experiments
10 times for statistically significant results.

Q.1 New Bugs

We ran SQLancer+QPG during approximately two
months—during which we also implemented the approach—
aiming to find bugs. To better demonstrate the underlying issue
for each bug found, we minimized the test case both using C-
Reduce [42] and manually. After reporting the bugs to the
developers, we suspended the testing process until the bug
was fixed to avoid duplicate reports whenever possible; when
bugs were not fixed within a timespan of weeks, we reported
multiple bugs that we suspected to be unique. The bugs in
SQLite were usually fixed within 24 hours, while the bugs
in TiDB and CockroachDB were usually fixed within several
weeks. As a result, we focused on testing SQLite. We used
NoREC [7] and TLP [6], which are the state-of-the-art oracles
supported by both SQLancer and SQLRight.

Listing 2. A bug in the RIGHT JOIN feature of SQLite.
1 CREATE TABLE t1(a CHAR);
2 CREATE TABLE t2(b CHAR);
3 INSERT INTO t2 VALUES(’x’);
4 CREATE TABLE t3(c CHAR NOT NULL);
5 INSERT INTO t3 VALUES(’y’);
6 CREATE TABLE t4(d CHAR);
7
8 SELECT * FROM t4 LEFT OUTER JOIN t3 ON TRUE

INNER JOIN t1 ON t3.c=’’ RIGHT OUTER
JOIN t2 ON t3.c=’’ WHERE t3.c ISNULL; --
{} , {|||x}

Listing 3. A bug in json_quote function of SQLite.
1 CREATE TABLE t1 (a CHAR);
2 CREATE VIEW v1(b) AS SELECT json(TRUE);
3 INSERT INTO t1 VALUES (’x’);
4
5 SELECT * FROM v1, t1 WHERE NOT json_quote(b); --

{} , {1|x}

Bugs overview. Table III shows the number of unique,
previously unknown bugs found by SQLancer+QPG. We
found 53 bugs in total, all of which have been confirmed.
Of these, 35 have already been fixed. Although SQLancer had
been extensively applied to these DBMSs, we were still able
to find these bugs with the help of QPG. Of the 53 bugs, 28
were logic bugs found by the test oracles TLP and NoREC,
and 25 bugs were associated with crashes or internal errors.
This demonstrates that the complex database states generated
by QPG are beneficial not only to finding logic bugs, but also
to other kinds of bugs. Although CockroachDB used the TLP
oracle in their Continuous Integration (CI) process,4 we still
found 16 previously unknown bugs using QPG. For the new
features in SQLite, QPG found 13 bugs in RIGHT JOIN, 2 bugs
in FULL JOIN, and no bug in STRICT. We give two examples
of found bugs as follows.

Example 1: a bug in the RIGHT JOIN feature. Listing 2
shows a test case exposing a logic bug that we found in
SQLite. The SELECT statement incorrectly returns an empty
result, because of an incorrect optimization of ISNULL when
used with a RIGHT JOIN. The query plan of the SELECT

statement is six operations long: scanning all tables once in
four operations, and joining table t2 with another scan on t2

in two operations. The query plan is relatively long, because
joining tables typically involves multiple operations. 13 bugs
in SQLite were in the RIGHT JOIN feature, in which QPG
generates more complex database states to find bugs.

Example 2: a bug in JSON feature. Listing 3 is another
logic bug that had existed in SQLite since July 23, 2016. The
SELECT statement incorrectly returns an empty result because
of an incorrect optimization of the json_quote function in the
context of a VIEW, which is necessary to find the bug. The
bug cannot be found if the second line is replaced by CREATE

TABLE v1(b)AS SELECT json(1). In SQLite, we found three

4https://github.com/cockroachdb/cockroach/commit/777382e6

https://github.com/cockroachdb/cockroach/commit/777382e6


TABLE IV
QUERY PLANS OF THE QUERIES IN NEWLY FOUND BUGS.

DBMS All Unique Length

SQLite 51 29 5.55
TiDB 12 9 5.67
CockroachDB 6 6 7.83

Avg: 6.35
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Fig. 3. The average number of unique query plans across 10 runs in 24 hours.
We could run TiDB and CockroachDB only for 6 hours due to crashes.

bugs that had been hidden for more than six years, and
SQLancer+QPG is the first tool to find them despite extensive
efforts by the authors of SQLancer and SQLRight.

The uniqueness and complexity of query plans. To better
understand how and whether QPG enables exploring a variety
of query plans, we analyzed the query plans of the queries
in Table III. In total, we obtained 69 query plans, of which
63.77% are unique. This further demonstrates the diversity of
query plans. On average, the length of query plans of queries
was 6.35. In comparison with Table II, where the average
number of operations in a query plan was 2.59, more complex
query plans are required to expose these newly found bugs,
and QPG was successful in causing them to be generated.

With the help of QPG, we found 53 unique, previously
unknown bugs where the average length of query plans of
queries is 6.35.

Q.2 Covering Unique Query Plans

We evaluated whether SQLancer+QPG can cover more
unique query plans than SQLancer and SQLRight in 24 hours.
Our study in Section III shows that query plans in previously-
found bugs are diverse, so covering more unique query plans
likely increases the probability of finding bugs. We designed
SQLancer+QPG to explore more unique and complex query
plans than SQLancer. We used the TLP oracle, which is the
only test oracle that is supported by all DBMSs we considered.

Measurements. Figure 3 shows the average number of
unique query plans covered by all tools across 10 runs in
24 hours. We recorded the query plans every 15 minutes and
removed the names of tables, views, and indexes as described
in Section III. For TiDB and CockroachDB, we could run
SQLancer+QPG at most for 6 hours, because SQLancer+QPG

TABLE V
THE AVERAGE AND MEDIAN NUMBER OF QUERY PLAN LENGTHS ACROSS

10 RUNS IN 24 HOURS. ONLY 6 HOURS ARE SHOWN FOR TIDB AND
COCKROACHDB BECAUSE OF CRASHES.

SQLancer SQLRight SQLancer+QPG

DBMS Avg Median Avg Median Avg Median

SQLite 2.95 2.00 2.17 1.00 4.69 4.00
TiDB 3.97 2.00 - - 15.04 8.20
CockroachDB 4.55 4.00 - - 8.87 6.90

Avg: 3.82 2.67 2.17 1.00 9.53 6.37

TABLE VI
THE LINE AND BRANCH COVERAGE ACROSS 10 RUNS IN 24 HOURS.

SQLancer SQLRight SQLancer+QPG

DBMS Line Branch Line Branch Line Branch

SQLite 30.3% 22.7% 48.1% 38.9% 32.6% 24.4%

found several crash bugs that remained unfixed during our
evaluation. We could run SQLRight only on SQLite, as SQL-
Right does not support TiDB and CockroachDB. Table V
shows the average and median lengths of query plans of the
queries executed across 10 runs in 24 hours.

Results. On both metrics, the number of unique query
plans and their complexity, SQLancer+QPG clearly outper-
forms SQLancer and SQLRight. SQLancer+QPG exercises
4.85–408.48× more unique query plans than SQLancer and
7.46× more than SQLRight. CockroachDB provides fine-
grained query plans, which is why SQLancer+QPG most
clearly outperformed SQLancer on this DBMS. The growth
rate of SQLancer+QPG in TiDB stagnates at around 5 hours
due to a crash bug that terminated the TiDB server process.
Table V shows that the average length of query plans in
SQLancer+QPG is 1.59–3.79× longer than for SQLancer, and
2.16× longer than for SQLRight. To mitigate randomness,
we measured the Vargha-Delaney [43] (Â12) and Wilcoxon
rank-sum test [44] (U ) of SQLancer+QPG against SQLancer.
Â12 measures the effect size and gives the probability that
random testing of SQLancer+QPG is better than random
testing of SQLancer (i.e., Â12 > 0.5 means SQLancer+QPG
is better). The Wilcoxon rank sum test U is a non-parametric
statistical hypothesis test to assess whether the result differs
across both tools. We reject the null hypothesis if U < 0.05,
that is, SQLancer+QPG outperforms SQLancer with statistical
significance. For both metrics, Â12 = 1 and U < 0.05 for
SQLancer+QPG against SQLancer on all DBMSs. The results
show that our algorithm continuously generates significantly
more unique and complex database states for testing.

QPG exercises 4.85–408.48× more unique query plans
than a naive random generation method and 7.46× more
than a code-coverage guidance method.

Code coverage. While we were primarily interested in



TABLE VII
THE NUMBER OF ALL AND UNIQUE BUGS FOUND ACROSS 10 RUNS.

SQLancer SQLRight SQLancer+QPG

DBMS All Unique All Unique All Unique

SQLite 2 1 2 1 4 2
TiDB 56 10 - - 118 12
CockroachDB 4 2 - - 8 3

Sum: 62 13 2 1 130 17

covering more unique query plans, code coverage is a common
metric of interest that also gives some insights on how much
of a system might be tested. Thus, we evaluated the line
and branch coverage of all three tools. Since TiDB and
CockroachDB are written in Go, which is not supported
by SQLRight, we measured code coverage only for SQLite.
Table VI shows the average percentage of line and branch cov-
erage across 10 runs in 24 hours. Although SQLancer+QPG
does not aim to maximize code coverage, SQLancer+QPG
still outperforms SQLancer on both line coverage and branch
coverage because of more unique query plans covered. SQL-
Right clearly achieves the highest coverage. The reasons for
this are that 1) SQLRight was designed to increase code
coverage, 2) SQLancer and SQLancer+QPG only generate
SQL statements for the core logic of DBMS, while SQLRight
produces all kinds of SQL statements by parsing the grammar
files from DBMSs, and 3) SQLRight provides high-quality
seeds that already cover 34.1% line coverage and 26.4%
branch coverage, outperforming the other tools even without
mutations. Since SQLite achieves 100% branch coverage in
their internal testing,5 we believe that higher code coverage
has a limited contribution for finding logic bugs.

Q.3 Bug Finding Efficiency

We evaluated whether SQLancer+QPG finds bugs faster
than SQLancer and SQLRight. To this end, we ran
SQLancer+QPG, SQLancer, and SQLRight for 24 hours with
the TLP oracle. We used a best-effort method to distinguish
unique bugs by checking whether 1) stack traces are the same
(crash bugs); 2) error messages are the same (error bugs); 3)
SQL clause structures are the same (logic bugs), such as two
bugs’ queries that only have RIGHT JOIN and GROUP BY clauses
are deemed to be duplicate bugs.

Table VII shows the sum of all bugs and only assumed-
unique bugs found by each tool in 24 hours and 10 runs.
Since crash bugs terminate the whole process, all experiments
concluded in less than 24 hours until the first crash was
observed (SQLite: 9 hours, TiDB: 1 hour, and CockroachDB:
16 hours). We did not restart the testing process as this would
disadvantage SQLancer+QPG by making it lose the database
states. Overall, SQLancer+QPG found 2× more bugs and
1.4× more unique bugs than SQLancer; 65× more bugs and
17× more unique bugs than SQLRight. As duplicate bugs

5https://www.sqlite.org/testing.html#mcdc
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Fig. 4. The average number of covered unique query plans to evaluate the
contributions of algorithm components across 10 runs in 24 hours.
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Fig. 5. The average number of covered unique query plans by the NoREC
oracle across 10 runs in 24 hours. The y axis uses a log scale.

significantly slow down the testing process and hinder finding
other bugs, the number of unique bugs is much smaller than the
number of all bugs. In TiDB, we found several easy-to-reach
bugs in JOINs, which do not require complex database states,
so the number of all bugs is much higher than for the others.
The results further show that bugs can be more efficiently
found by exploring more unique query plans.

QPG finds previous bugs 1.4× faster than a naive random
generation method and 17× faster than a code-coverage
guidance method.

Q.4 Sensitivity Analysis

To evaluate the contribution of SQLancer+QPG’s compo-
nents, we performed a sensitivity analysis.

Contributions of algorithm components. Our major con-
tributions are query plan collection 3⃝ and database state
mutation 4⃝ shown in Figure 1. To assess their contributions,
we derived a new configuration SQLancer + QPGr that
enables only the query plan collection 3⃝, and randomly
applies mutations in 4⃝. Figure 4 shows the average num-
ber of covered unique query plans across 10 runs in 24
hours with the TLP oracle. SQLancer+QPG outperforms
SQLancer + QPGr, demonstrating the contribution of 4⃝.
SQLancer + QPGr outperforms SQLancer, demonstrating
the contribution of 3⃝. SQLancer+QPG has a higher growth
rate than SQLancer + QPGr, because 4⃝ gradually learns
which mutation operators are promising. Due to the crash
bugs, we ran TiDB and CockroachDB for only 6 hours.

https://www.sqlite.org/testing.html#mcdc
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Fig. 6. The average number of covered unique query plans by varying the
maximum number of queries per database state across 10 runs in 24 hours.

Sensitivity of oracles. We also evaluated SQLancer+QPG
with NoREC, which is the second state-of-the-art oracle.
Figure 5 shows the average number of covered unique query
plans across 10 runs in 24 hours for NoREC oracle. SQLancer
lacks a NoREC oracle for TiDB, so we exclude it here. All
tools have a higher number of covered unique query plans with
the NoREC than with the TLP oracle, because of different
constraints on queries from NoREC and TLP. Similar to TLP,
SQLancer+QPG gains a significant advantage over SQLancer
and SQLRight with the NoREC oracle.

Sensitivity of maximum queries per database. Both
SQLancer+QPG and SQLancer have a configuration to control
the number of tested queries before clearing database states
and starting a fresh testing instance. The default value for
both is 1,000,000. Often, starting a fresh testing instance at
1⃝ may result in a higher number of covered unique query

plans. To evaluate whether SQLancer+QPG still performs
well when more frequently resetting database states, we ad-
justed the number to 10,000 and 100,000, and evaluated the
number of their covered unique query plans. Figure 6 shows
the average number of covered unique query plans under
the various maximum number of queries per database state.
SQLancer+QPG gains a significant advantage over SQLancer
in all experiments. We clearly see that the rate of newly
discovered query plans of SQLancer stagnates over time, while
SQLancer+QPG’s rate continues to increase. Configuring the
number is a trade-off since SQLancer+QPG creates more
complex query plans with a higher number of maximum
queries per database state and more unique query plans with
a lower number. A user can adjust the configuration option
depending on the testing goals.

Sensitivity of mutations. To evaluate the contribution of
each mutation, we examined how often each mutation (i.e.,
SQL statement) was executed across 10 runs in 24 hours.
Figure 7 shows the five most frequently executed mutations
for each DDBMS. The most frequently-executed mutation for
SQLite is CREATE TABLE. Other frequently executed mutations
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Fig. 7. How often a mutation was executed for the five most frequently
executed mutations for SQLite, TiDB, and CockroachDB across 10 runs.

either create other kinds of tables that are unique to SQLite
or change the schema of existing tables using ALTER. This is
expected, as more kinds of tables subsequently cause SQLite
to explore more query plans. Despite frequently creating ad-
ditional tables, we did not observe excessive execution times,
as we limited the maximum number of tables and indexes.
For TiDB and CockroachDB, the number of mutations is
much lower than that for SQLite, as we could run them
for only up to 6 hours. QPG favors the mutation CREATE

INDEX for TiDB, because indexes allow it to use more efficient
physical operators when reading data. For CockroachDB,
QPG favors the mutation SET SESSION, because it changes
the system options, which can have an impact on the query
plan. QPG favors creating tables as various types of tables
are supported in SQLite. Overall, all DBMSs have common
frequent mutations, such as CREATE TABLE, yet have distinct
frequent mutations, such as SET, depending on the various
characteristics of DBMS.

For all three analyses, Â12 = 1 and U < 0.05 for
SQLancer+QPG against SQLancer on all DBMSs, which
indicates the results are statistically significant.

VI. RELATED WORK

Fuzzing. Fuzzing is an automatic software testing technique
that generates or mutates inputs to target programs for finding
crash bugs [45]. In recent years, it has gained increased
attention, because of the success of the coverage-guided grey-
box fuzzers such as AFL [10], [11], which instrument target
programs to record code coverage which is subsequently used
to mutate inputs to maximize code coverage. A plethora of
works [46] have been proposed to improve fuzzing in various
aspects. While QPG relates to grey-box fuzzing, we focus on
finding logic bugs and DBMSs specifically, and guide test case
generation by query plans rather than code coverage.

Finding logic bugs. Various techniques have been proposed
to find logic bugs in DBMSs. Differential testing [47] is
a general technique that compares the outputs of multiple
systems for the same input to detect potential discrepancies
indicating bugs; various approaches use it as a test oracle
for finding logic bugs by using different DBMSs [16], [48],
[49] or different versions of a DBMS [4], [50]. While such
approaches have successfully found bugs, they are prone to



false alarms due to differences in SQL dialects or expected
differences between versions. Subsequently, three test oracles
were proposed and implemented in SQLancer [6]–[8]. While
we evaluated our technique with the state-of-the-art oracles
NoREC and TLP, our method is compatible with any oracles.

Query generation. Targeted and random generations are two
major directions in query generation. As for targeted query
generation, Bati et al. [29] proposed to incorporate execution
feedback, such as code coverage, for guiding query generation
to reach a specific code location. Khalek et al. [51] used a
solver-backed approach to generate syntactically and semanti-
cally correct queries. Generating queries that satisfy cardinality
constraints has been proven to be computationally hard, which
is why heuristic algorithms were proposed [52], [53]. As for
random query generation, SQLsmith [15] uses a predefined
grammar to randomly generate semantic valid queries and has
found over 100 bugs in widely-used DBMSs. APOLLO [12]
also uses a predefined grammar to generate queries for finding
regression performance issues. Similarly, we use a grammar-
based random generation method for generating valid queries.
Squirrel [5] and SQLRight [9] use a mutation-based method
to generate new queries, but such approaches are prone to
generating queries that are semantically invalid.

Database state generation. Similarly, targeted and random
generations are two major directions in database state gener-
ation. As for targeted database state generation, QAGen [54]
uses symbolic execution to specify constraints and generate
queries that satisfy the constraints. SPQR [55] generates the
database state for a given query and expected results. As for
random database state generation, Gray et al. [56] proposed
to quickly generate billions-record databases using parallel
algorithms. Coverage-based methods [5], [9] generate new
database states by mutating given SQL statements that are used
to create the database state. Compared with these methods,
we used query plans as guidance to generate more diverse
database states for efficiently finding logic bugs.

Query plan in testing. Database researchers have invested
decades of effort to improve the performance of DBMSs,
often by improving the performance of generated query plans
or the operators used in them [17], [57]–[60]; providing a
comprehensive summary of these exceeds the scope of this
paper. In terms of testing, Gu et al. [23] proposed measuring
the accuracy of query optimizers by forcing the generation of
multiple alternative query plans for each test case, timing the
execution of all alternatives, and ranking the plans by their
effective costs with the goal of comparing this ranking with
the ranking of the estimated cost. Leis et al. [22] measured
both the effects of the cost model and cardinality estimators
used to derive an efficient query plan. Rather than improving,
studying, or testing the accuracy of query plans, we use query
plans to guide test case generation.

VII. CONCLUSION

In this paper, we have proposed the concept of Query
Plan Guidance (QPG) to efficiently detect logic bugs in
DBMSs. Its core insight is that the DBMS’ internal execution

logic for a given query is reflected by its query plan and,
therefore, covering more unique query plans might increase
the likelihood of finding logic bugs. Our study shows that
the query plans of the queries in previously-found bugs vary
significantly, but are simple. Thus, we designed an algorithm
to gradually mutate database states toward more unique and
complex query plans. QPG enabled us to find 53 unique,
previously unknown bugs in widely-used and extensively-
tested database systems—SQLite, TiDB, and CockroachDB.
The experiments show that QPG results in 4.85–408.48× more
unique query plans than a random-generation method and
7.46× more than a code coverage-guidance method. QPG also
improves logic-bug finding efficiency by 2×. Overall, this pa-
per has demonstrated that QPG is a general-applicable, black-
box approach that increases bug-finding efficiency and enables
finding difficult-to-trigger bugs. While we demonstrated QPG
in the context of automated testing, we believe that the core
idea could be applied also in other contexts (e.g., to measure
the quality of a test suite).

VIII. DATA AVAILABILITY

Our implementation and experimental data are publicly
available at https://zenodo.org/record/7553013.
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